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INTRODUCTION

The art and science of crystal chemistry lies in the interpretation of three-
dimensional electron and nuclear density data from diffraction experiments in terms of
interatomic bonding and forces. With the exception of meticulous high-resolution studies
(e.g. Downs 1983, Downs et al. 1985, Zuo et al. 1999), these density data reveal little
more than the possible atomic species and their distributions within the unit cell. Other
parameterizations of crystal structures, including atomic radii, bond distances, packing
indices, polyhedral representations, and distortion indices, are model-dependent. These
secondary parameters have proven essential to understanding structural systematics, but
they are all based on interpretations of the primary diffraction data.

Comparative crystal chemistry carries this interpretive process one step further, by
comparing parameters of a given structure at two or more sets of conditions. In this
volume we focus on structural variations with temperature or pressure, though the general
principles presented here are just as easily applied to structural variations with other
intensive variables, such as electromagnetic field, anisotropic stress, or composition
along a continuous solid solution. Two or more topologically identical structures at
different temperatures or pressures may vary slightly in unit-cell parameters and atomic
positions, thus adding a variable of state to the structural analysis.

A straightforward procedure for reporting structural data at a sequence of tem-
peratures or pressures is to tabulate the standard primary parameters (unit-cell
parameters, fractional atomic coordinates and thermal vibration coefficients, along with
refinement conditions) and secondary parameters (e.g. individual and mean cation-anion
bond distances, bond angles, polyhedral volumes and distortion indices) for each set of
conditions. Most such structural studies also include graphical illustrations of the
variation of key secondary parameters with temperature or pressure. In addition, several
useful comparative parameters, including bond compressibilities and thermal
expansivities, polyhedral bulk moduli, and strain ellipsoids, have been devised to
elucidate structural variations with temperature or pressure, and to facilitate comparisons
of this behavior among disparate structures.

The principal objective of this chapter is to define the most commonly cited
comparative parameters and to review some general trends and principles that have
emerged from studies of structural variations with temperature and pressure.

! This chapter is adapted, in part, from Comparative Crystal Chemistry (Hazen and F inger 1982).
1529-6466/00/0041-0001$05.00
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THE PARAMETERS OF A CRYSTAL STRUCTURE

A complete description of the structure of a crystal requires knowledge of the spatial
and temporal distributions of all atoms in the crystal. By definition the crystal has
periodicity, so the spatial terms can be represented by (1) the size and shape of the unit
cell, (2) the space group, and (3) the fractional coordinates of all symmetrically distinct
atoms along with their associated elemental compositions. A complete description of the
temporal variation is impossible for all real materials and a simplifying assumption of
independent atoms with harmonic vibrations is usually made. This assumption implies
thermal ellipsoids of constant probability density, which constitute the fourth element of
the structure description (see Downs, this volume, for a discussion of thermal motion and
its analysis). The determination of these structural parameters remains a major objective
of crystallographers.

Although the majority of structures can be characterized by these four elements
alone, many atomic arrangements are more easily conceptualized with the aid of
additional descriptors derived from the basic set. Many crystal structures, especially those
of mineral-like phases, are traditionally described in terms of nearest-neighbor clusters of
atoms. Most structural parameters, including cation-anion bond distances, interatomic
angles (both anion-cation-anion and cation-anion-cation), polyhedral volumes and
polyhedral distortion indices, thus relate to cation coordination polyhedra. These
parameters are reviewed briefly below.

Interatomic distances

Equilibrium distances between pairs of bonded atoms represent the most important
single factor in determining a compound’s crystal structure (Pauling 1960). The bonding
environment for a given pair of ions is similar over a wide range of structures, and thus
enables an analysis of structures by isolating nearest-neighbor clusters (e.g. Gibbs 1982).
Boisen and Gibbs (1990) present a straightforward matrix algebra approach to the
calculation of bond distances between two atoms at fractional coordinates (x,,y;,z;) and
(X5,¥2,2,) for a crystal with unit-cell parameters a, b, ¢, &, 8, and . This value is the
distance most commonly reported in crystallographic studies. A program for calculating
bond distances and angles, known as METRIC, is incorporated into the XTALDRAW
software written by Downs, Bartelmehs and Sinnaswamy, and is available on the
Mineralogical Society of America website. The METRIC software was written by Boisen,
Gibbs, Downs and Bartelmehs.

Thermal corrections to bond distances. An important and often neglected aspect of
bond distance analysis is the effect of thermal vibrations on mean interatomic separation.
Busing and Levy (1964) noted that “the atomic coordinates resulting from a crystal
structure analysis represent the maximum or the centroid of a distribution of scattering
density arising from the combined effects of atomic structure and thermal displacement.”
Interatomic distances reported in most studies are calculated as the distance between
these atomic positions. However, as Busing and Levy demonstrate, a better measure of
interatomic distance is the mean separation. In general, the mean separation of two atoms
will always be greater than the separation between the atomic positions as determined by
refinement under the independent atom assumption. Thus, thermal expansion based on a
mean separation may be greater, and may represent a more valid physical interpretation,
than that reported in most recent studies.

Calculation of precise mean separation values requires a detailed understanding of
the correlation of thermal motions between the two atoms. While this information is not
available for most materials, it is possible to calculate lower and upper limits for mean



Principles of Comparative Crystal Chemistry 3

interatomic distances. In addition, the special cases of riding motion and non-correlated
vibrations may be calculated using equations cited by Busing and Levy (1964). Lower
bound, upper bound, riding, and non-correlated thermally corrected bond distances are
computed by the least-squares refinement program RFINE (Finger and Prince 1975).

One possible correlated motion is the rigid-body motion that is exhibited by the
atoms in a molecule that are tightly bonded to each other (Shomaker and Trueblood
1968). The SiO, group offers a good example (Bartelmehs et al. 1995). The Si and O
atoms vibrate as a group, as if held together by rigid rods, between the Si and O atoms
and also between the four O atoms. The mathematics for recognizing and treating the
rigid-body case is carefully laid out in a chapter by Downs (this volume). Downs et al.
(1992) determined a simple equation for computing the bond length correction between a
cation and an anion that are held with a strong rigid bond, but not necessarily part of a
rigid body,

3
stRB = R2 + W[Biso(A) - Biso(c)]

where Rggp is the length of the simple rigid bond, R is the observed bond length, and
B, (A) and B, (C) are the isotropic temperature factors for the anions and cation,
respectively. This equation produces a corrected bond length that generally agrees with
the rigid body model to within 0.001 A and is suitable for application to many tetrahedral
and octahedral bonds found in minerals. A systematic study of the correction to bond
lengths and volumes of SiO, groups determined as a function of temperature can be
found in Downs et al. (1992).

It is important to understand the physical significance of the various types of
thermally corrected interatomic distances, which are summarized below.

1. Lower Bound Corrections: The lower bound of mean separation may result from
highly correlated parallel motions of the two atoms. This distance will closely
approximate the uncorrected centroid separation, because atoms vibrating in
parallel have nearly constant separation equal to that of the atomic coordinate
distance.

2. Upper Bound Corrections: The upper bound of mean separation occurs if atoms
vibrate in highly correlated anti-parallel motion. For instance, if one atom is
vibrating perpendicular to the bond in an upwards direction, then the other is
vibrating downwards.

3. Riding Corrections: Riding corrections are applicable to the case where one
lightweight atom’s vibrations are superimposed on the vibrations of another,
heavier atom, as in the case of a hydrogen bonded to an oxygen atom. Riding
corrections are usually only slightly larger than lower bound corrections, because
both involve parallel and correlated motions.

4. Non-correlated Corrections: Non-correlated motions, as the name implies, are
represented by atoms that do not directly interact, as in non-bonded atoms of
molecular crystals. Such corrections, which are clearly intermediate between
those of correlated parallel and anti-parallel motions, might be applicable to
cation-cation distances in some silicates. Furthermore, if cation-anion distances
in silicates are presumed to have more parallel than anti-parallel motion, then the
non-correlated distance may serve as the upper limit for thermally corrected
cation-anion bond distances.

5. Rigid Body Motion: Rigid body motion is applicable if a group of atoms vibrate
in tandem, with identical translational component and an oscillatory librational
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component. The model was developed for molecular crystals, but has found
application to the strongly bonded polyhedral units found in many Earth
materials. The magnitude of correction is similar to that provided by the riding
correction but applicable to heavier atom such as in SiO,, or MgOy.

In their careful study of the effect of temperature on the albite structure, Winter et al.
(1977) demonstrate the Busing and Levy (1964) corrections on various Al-O, Si-O and
Na-O bonds. We modify their figure showing the variation in the Al-OA1 bond lengths
versus temperature to include the rigid body correction (Fig. 1). The magnitude of
thermal corrections, naturally, depends upon thermal vibration amplitudes. Thus, at high
temperatures thermal corrections can be as large as 5% of the uncorrected distance.
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Figure 1. A plot of the length of the Al-OA1 bond versus temperature
for low albite, modified from Winter et al. (1977). The bond length is
corrected for the Busing and Levy (1964) effects, as indicated by solid
lines, as well as for rigid body motion, as indicated by the cross-marks
located just above the riding correction.

Ionic radi. Expected cation-anion bond distances at ambient conditions may be
systematized by developing tables of internally-consistent ionic radii—an approach
pioneered by the work of Bragg, Lande, Goldschmidt and others (see Pauling 1960). One
of the most widely quoted radii tables was developed by Shannon and Prewitt (1970) and
revised by Shannon (1976). All radii tables require the assumption of one standard radius,
because diffraction experiments provide information on interatomic distances. Shannon
and Prewitt set the radius of oxygen at 1.40 A, in accord with the value chosen by
Pauling.
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A consequence of the 1.40 A value for oxygen is that anions are modeled as larger
than cations in most mineral-like compounds. Not all authors agree with this concept of
“small” cations, however. Slater (1963) and Prewitt (1977) have suggested that smaller
anions may be more realistic. O’Keeffe and Hyde (1981) have proposed, alternatively,
that two sets of radii should be considered in the description of structure. Bonded radii
are similar to the Pauling and the Shannon and Prewitt sizes, with anions larger than
cations. In addition, O’Keeffe and Hyde propose the use of “nonbonded” radii for next-
nearest neighbor anions. In this formulation, the nonbonded radii for cations are
significantly greater than for anions. These second-nearest neighbor radii have been used
successfully to explain the near constant distance of some cation-cation pairs, such as Si-
Si, in a wide variety of structures.

Gibbs and co-workers (cf. Gibbs et al. 1992) have argued that the various sets of
radii should only be used to generate bond lengths and are not to be confused with
indicating the physical size of atoms in crystals. Electron density maps can provide
information on the physical size of atoms, determined from the location of minima in the
density along the bonds. Such an approach shows that there is no single radius for a given
atom, but that it varies from bond to bond. In general, however, these maps demonstrate
that the size of the O atom is more-or-less similar to the radius provided by the Shannon
(1976) model. The large cation radii of the O’Keefe and Hyde (1981) model are con-
sistent with the diffuse electron density of cations.

Interbond angles

Interbond or interatomic angles are secondary parameters of a crystal structure that
quantify the angle in space defined by three adjacent atoms. Boisen and Gibbs (1990)
present a matrix algebra formulation for the general case of calculating a bond angle 9, , 5
that is defined by a central atom at fractional coordinates (x;,y,,z,) and two other atoms at
(X3,¥2,2») and (X3,y3,23), for a crystal with unit-cell parameters a, b, ¢, &, B, and ¥. The
XTALDRAW software provides bond angle calculations based on this scheme.

Two types of interbond angles are most commonly reported. Nearest-neighbor
cation-anion-cation angles are often tabulated when the two cations are situated in
coordination polyhedra that share corners. Thus, Si-O-Si angles are invariably cited in
descriptions of chain silicates (see Yang and Prewitt, this volume), and Si-O-Al angles
are reported for framework aluminosilicates (see Ross, this volume). In addition,
intrapolyhedral anion-cation-anion angles are commonly listed for cations in 2-, 3-, 4-, 5-
or 6-coordination. Note that in the case of 5- and 6-coordinated cations a distinction
can be made between adjacent and opposite anion-cation-bonds. In a regular cation
octahedron, for example, adjacent anion-cation-anion bond angles are 90°, whereas
opposite bond angles are 180°.

Bond angles have always been calculated on the basis of centroid atom positions,
without regard to thermal motion. This convention, however, may result in misleading
values of bond angles in special cases, most notably in the situation of Si-O-Si bonds that
are constrained by symmetry to be 180° (e.g. in thortveitite ScSi,O; and high cristobalite
Si0,). In these cases, the spatially averaged bond angle is always significantly less than
180°, because thermal motion of the oxygen atom is toroidal. Thus, the oxygen atom
rarely occupies a position midway between the two silicon atoms. Nevertheless, the time-
averaged oxygen position is constrained to lie on a straight line between the silicon
atoms, so the calculated angle is 180°. In the case of a rigid polyhedron, it is possible to
compute thermally corrected angles from an analysis of the rigid body motion, as
described in the chapter by Downs. The O-Si-O angles in a variety of SiO, groups
characterized at high temperature (Downs et al. 1992) were found to be quite similar to
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their uncorrected values. However, corrected bond lengths and £Si-O-Si for the silica
polymorphs can vary considerably. For instance, R(SiO) = 1.5515 A and £8i-O-Si =
180° for B-cristobalite at 310°C (Peacor 1973). Corrected for SiO, rigid body vibration
we find that the corrected R(SiO) = 1.611 A, and a thermally corrected £Si-O-Si =
148.8°. This result is in good agreement with room temperature values of 1.607 A and
146.6°, respectively.

Coordination polyhedra

In numerous compounds, including most of those characterized as “ionic” by
Pauling (1960), it is useful to examine cation coordination polyhedra as subunits of the
structure. Their volumes and their deviations from ideal geometrical forms, furthermore,
may provide useful characterizations of these subunits.

Polyhedral volumes. In most cases of cations coordinated to four or more nearest-
neighbor anions, the coordination polyhedron may be treated as a volume that is defined
as the space enclosed by passing planes through each set of three coordinating anions.
Software to calculate polyhedral volumes is available from http://www.ccpl4.ac.uk/. One
such computer program is described by Swanson and Peterson (1980).

Polyhedral distortions. Cation coordination polyhedra in most ionic structures only
approximate to regular geometrical forms. Deviation from regularity may be
characterized, in part, by using distortion parameters. Two commonly reported
polyhedral distortion indices are quadratic elongation and bond angle variance, which are
based on values of bond distances and bond angles, respectively (Robinson et al. 1971).

Quadratic elongation, (A), is defined as:
W =% [(/1)/n] (1)

where /, is the center-to-vertex distance of a regular polyhedron of the same volume, /; is
the distance from the central atom to the ith coordinating atom, and 7 is the coordination
number of the central atom. A regular polyhedron has a quadratic elongation of 1,
whereas distorted polyhedra have values greater than 1.

Bond angle variance, 67, is defined as:
o’ = 2; [(8; - 8,)*/(n-1)] (03]

where 6, is the ideal bond angle for a regular polyhedron (e.g. 90° for an octahedron or
109.47° for a tetrahedron), 0, is the jth bond angle, and » is the coordination number of
the central atom. Angle variance is zero for a regular polyhedron and 2positive for a
distorted polyhedron. Robinson et al. (1971) showed that {A) and ¢° are linearly
correlated for many silicates and isomorphic structures. However, Fleet (1976) showed
that this correlation is not mandated by theory and does not hold true for all structure

types.

Quadratic elongations and bond angle variances are scalar quantities so they provide
no information about the geometry of polyhedral distortions. For example, it may be
possible that an elongated octahedron, a flattened octahedron, or an octahedron with all
different bond distances all have the same quadratic elongatlon ({A) > 1) and bond angle
variance. Similarly, one can imagine a wide range of distorted shapes for octahedra with
six identical cation-anion bond distances (quadratic elongation, { 75 1), but significant
angular distortions. For this reason it is often useful to illustrate distorted polyhedra with
ball-and-stick drawings that include distance and angle labels.
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Standard computer programs for calculating polyhedral volumes also usually provide
calculations of quadratic elongation and bond angle variance, along with their associated
errors, for octahedra and tetrahedra. The XTALDRAW software provides calculations of
these sorts of parameters.

An alternative parameterization of polyhedral distortions was proposed by Dollase
(1974), who developed a matrix algebra approach. He describes distortions in terms of a
“dilational matrix,” which compares the observed polyhedron with an idealized
polyhedron. This approach permits the calculation of the degree of distortion relative to
an idealized polyhedron of lower than cubic symmetry (i.e. how closely might the
observed polyhedron conform to tetragonal or trigonal symmetry). In spite of the rigor of
this approach, especially compared to scalar quantities of quadratic elongation and bond
angle variance, the Dollase formulation has not been widely adopted.

COMPARATIVE PARAMETERS

Closely related structures, such as two or more members of a solid solution series or
the structure of a specific compound at two or more different temperatures or pressures,
may be described with a number of comparative parameters (hence the title of this
chapter, “...Comparative Crystal Chemistry”). Comparative parameters add no new data
to descriptions of individual crystal structures, but they are invaluable in characterizing
subtle changes in structure. The reader should be aware that many of these comparisons
involve subtraction, explicit or implicit, of two quantities of similar magnitude. In such
cases the error associated with the difference may become very large. It is essential to
propagate errors in the initial parameters to the derived quantity being investigated. For
example, if y = X, — X,, then 6%, = 6%,; + 6%,. See also, for example, Hazen and Finger
(1982).

Changes in unit-cell parameters: the strain ellipsoid

Unit-cell parameters vary systematically with temperature and pressure, and a
number of approaches have been developed to parameterize these changes. The most
fundamental unit-cell change relates to volume compression and thermal expansion, as
considered in the chapter on equations of state (see Angel, this volume). In addition, one
can consider axial changes (linear thermal expansion and compression) and the strain
ellipsoid, which quantifies the change in shape of a volume element between two sets of
conditions.

Linear changes of the unit cell are relatively easy to measure and they provide
important information regarding structural changes with temperature or pressure. As
uniform temperature or hydrostatic pressure is applied to a crystal, a spherical volume
element of the original crystal will, in general, deform to an ellipsoid. Symmetry
constraints dictate that this ellipsoid must have a spherical shape in cubic crystals. In
uniaxial (trigonal, hexagonal and tetragonal) crystals this strain ellipsoid must also be
uniaxial and be aligned with the unique crystallographic axis. In orthorhombic crystals
the principal axes of the strain ellipsoid must be aligned with the orthogonal
crystallographic axes. Therefore, axial changes of the unit-cell completely define the
dimensional variation of the lattice and the strain ellipsoid in the cubic, hexagonal,
trigonal, tetragonal and orthorhombic cases.

In each of the cases noted above, the strain ellipsoid’s maximum and minimum
directions of compression or expansion are parallel to the crystallographic axes and can
be calculated directly from unit-cell parameters. A useful parameter in these instances is
the anisotropy of compression or thermal expansion, which is given by the length change
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of the strain ellipsoid’s major axis divided by the length change of the ellipsoid’s minor
axis.

In monoclinic and triclinic crystals, on the other hand, unit-cell angles may also
vary. A cataloging of changes in each axial direction does not, therefore, reveal all
significant changes to the unit cell. In the triaxial strain ellipsoid, major and minor
ellipsoid axes represent the orthogonal directions of maximum and minimum change in
the crystal. Relationships between the strain ellipsoid and the crystal can be calculated as
described by Ohashi and Burnham (1973).

The usefulness of the strain ellipsoid is illustrated by considering the behavior of
albite (NaAlSi;Oq) at high temperature. All three crystallographic axes of this triclinic
mineral are observed to expand between room temperature and 900°C. Calculation of the
strain ellipsoid, however, reveals that one principal direction actually contracts as
temperature is increased (Ohashi and Finger 1973).

The strain ellipsoid may be derived from two related sets of unit-cell parameters as
follows (modified after Ohashi and Burnham 1973). Let a;, b, , ¢, represent direct unit-
cell vectors before (i = 0) and after (i = 1) a lattice deformation. A strain tensor [S] may
be defined in terms of these vectors, such that:

S'a():al—ao (3)

In matrix notation, define the bases Dy = {ag,bg,¢,00,B0, Yo} and D = {a;,b;,¢;,01,B1 71}
Also define A and A, to be matrices that transform from the direct-space systems of Dy
and D, to a Cartesian system such that Ay[v], = [v]c and A,[v]; = [V]c. These
transformation matrices can be constructed in an infinite number of ways, but a popular
choice is Equation (2.31) in Boisen and Gibbs (1990),
asinf8 -bsinacosy* 0
A=ﬁﬂ4wkﬁk]= 0 bsinosiny* 0 4)
acosfB beosa c

Equation (3) can then be rewritten as
S'AO = A] - Ao,

where A, and A, are obtained from Equation (4) using the appropriate cell parameters.
The strain matrix can be computed by

S=S8 A()Ao-l = AIAO_] - A()Ao-l = AIAO—I — 13.

The resulting strain matrix may not represent an ellipsoid because it may not be
symmetric, so most researchers transform it into the symmetric strain tensor, €, which is
defined as

e=[S+892 &)

In general, unit strain results are reported. These are defined as the fractional change
of major, minor and orthogonal intermediate strain axes per K or per GPa, combined with
the angles between strain axes and crystallographic axes. Software (Ohashi 1982) to
calculate the strain ellipsoids from unit-cell data is provided at the Mineralogical Society
of America website, http://www.minsocam.org.
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Changes in bond distances: thermal expansion

The addition of heat to an ionic crystal increases the energy of the crystal, primarily
in the form of lattice vibrations or phonons, manifest in the oscillation of ions or groups
of ions. When ionic bonds are treated as classical harmonic oscillators, the principal
calculated effect of temperature is simply increased vibration amplitude, with eventual
breakage of bonds at high temperature as a result of extreme amplitudes. This model is
useful in rationalizing such high-temperature phenomena as melting, site disordering, or
increased electrical conductivity. The purely harmonic model of atomic vibrations is not
adequate to explain many properties of crystals, however, and anharmonic vibration
terms must be considered in any analysis of the effect of temperature on crystal structure.
For instance, the equilibrium bond length remains unchanged in the harmonic model.
Programs that incorporate anharmonic treatments of the thermal motion include
ANHARM (hans.boysen@Irz.uni-muenchen.de) and Prometheus (kuhs@silly.uni-
mki.gwdg.de).

Thermal expansion coefficients. An important consequence of anharmonic motion
is thermal expansion, which includes the change in equilibrium bond distance with
temperature. Dimensional changes of a crystal structure with temperature may be defined
by the coefficient of thermal expansion, o, defined as:

Linear o, = zli_ (g—;{jp 6)
Volume o, = % (gi;jp 0]

where subscript P denotes partials at constant pressure. Another useful measure is the
mean coefficient of expansion between two temperatures, T, and T:

(dz—dn) o
dl +d2 ':(TZ_T]):|~CX@2) (8)

2
The mean coefficient of thermal expansion is the most commonly reported parameter in
experimental studies of structure variation with temperature.

Mean 07, T,) =

T T T T T T

Figure 2. An idealized plot of the coefficient
of thermal expansion as a function of tem-
perature for a cation-anion bond or a volume
element of an ionic solid. A small range of
negative thermal expansion is often observed
near absolute zero (after White 1973).

Coefficient of thermal expansion

1 i L i 1 1
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No simple functional form successfully models linear or volume thermal expansion
in all materials. The coefficient of thermal expansion is a function of temperature, as
illustrated in Figure 2. Near absolute zero, where there is virtually no change in potential
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energy of a system with temperature, there is also little thermal expansion. In fact, a small
range of negative thermal expansion is often observed in compounds below 30 K. As the
potential energy increases, so does thermal expansion For want of a more satisfactory
theoretically based equation, most thermal expansion data are presented as a simple
second-order polynomial (e.g. Fei 1995):

(X(T)=a0+a1T+ 612]12 (9)

where a,, a,, and a, are constants determined by fitting the experimental temperature-
distance or temperature-volume data.

Systematics of bond thermal expansion. The thermal expansion of a cation-anion
bond is primarily a consequence of its interatomic potential. It is not surprising to
observe, therefore, that a given type of cation-anion bond displays similar thermal
expansion behavior in different structures. Figure 3, for example, illustrates the similar
thermal expansion behavior of octahedral Mg-O bonds in a wide variety of oxide and
silicate structures. The mean Mg-O bond distance for each symmetrically independent
MgO octahedron in these compounds displays near linear thermal expansion between
room temperature and the maximum temperatures studied (from 700 to 1000°C), with a
coefficient of expansion ~14 (+2) x 10 K. Another example (Fig. 4) is provided by the

+ Mg,Si0; (Hozen, 19760)
2.181- @ CaMgSiO, {Loger & Meogher, 1978) -1
0 Mg,AlSigOg-7H,0 (Hochella ef a/,1979)
I x MgO (Hazen 1976b) J
o CaMgSi,0q (Comeron ef o/, 1973)
216k * Ca,MgsSig0,, (OH), N
(Sueno et 0/,1973) +
8 KMg3AlSiz0,5{0H),
i (Tokeda & h
Morosin,
~ 2.14 -
°<
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o
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o
o 2121
o
= i ]
o
o
s
2,10 .
2.081- T
2.06 L
1 1 1 1 L L
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Figure 3. Mean thermal expansion of Mg-O bonds in MgOg octahedra is
similar in a variety of oxides and silicates (after Hazen and Finger 1982).
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thermal expansion of BeO, tetrahedra in
the oxide bromellite (BeO), in the ring
silicate beryl (Be;Al,SigO 3), in the
orthosilicate phenakite (Be,Si0O,4), and in
chrysoberyl (BeAl,0, with the olivine
structure). Tetrahedra in these structures
display similar slopes and curvatures in
plots of temperature versus bond distance
and temperature versus volume.

In spite of the striking similarities in
thermal expansion behavior for the
average distance of a given type of bond
in different structures, significant
differences in expansivity are often
observed for individual bonds. In the
case of forsterite (Mg,Si0O, in the olivine
structure), for example, the mean
expansion coefficient of Mg-O bonds in
the M1 and M2 octahedra are both 16 x
1078 K'!' (Hazen 1976a). Expansion
coefficients for individual Mg-O bonds
within these distorted octahedra,
however, range from 8 to 30 x 10° K*!,
with longer bonds displaying greater
expansion coefficients (Fig. 5). Such
thermal expansion anisotropies, which
must be analyzed by comparing the
behavior of all symmetrically indepen-
dent cation-anion bonds, are critical to
developing insight regarding effects of
temperature on crystal structure.

Systematic trends are also revealed
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A vi)-02)
Q@ )
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<
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Mg-0 DISTANCE  (at O K)

Figure 5. Thermal expansion coefficients of individual Mg-O bonds versus bond

distance in forsterite (from Hazen 1976).
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by comparison of the magnitude of thermal expansion for different cation-anion bonds.
Several previous workers have noted that thermal expansion of cation-anion bond
distance is most dependent on the Pauling bond strength: the product of formal cation and
anion valences, z, and z,, divided by coordination number, n. Thermal expansion is
largely independent of ionic mass or cation-anion distance. Based on these empirical
observations, Hazen and Finger (1982) give a general relation for linear thermal
expansion of mean bond lengths:

oo = 4.0(4)[52” } x 100 K! (10)

c~a

where §° is an empirical ionicity factor defined to be 0.50 for silicates and oxides, and
observed to be ~0.75 for all halides, 0.40 for chalcogenides, 0.25 for phosphides and
arsenides, and 0.20 for nitrides and carbides.

This equation is physically reasonable. If bond strength is zero between two atoms
(i.e. n =0 in Eqn. 10), as in the case of an inert gas, then thermal expansion is infinite. If
bond strength is very large, as in the case of a silicon-oxygen bond, then thermal
expansion approaches zero. In practice, Equation (10) may be used to predict linear
expansion coefficients for average cation-anion bonds in most coordination groups to
within £20%. The formula does not work well for the largest alkali sites, for which
coordination number may not be well defined. The formula is also inadequate for bond
strengths greater than 0.75, which are observed to have expansion coefficients less than
those predicted. Yet another limitation of this inverse relationship between bond strength
and thermal expansion is the lack of information on thermal corrections to bond
distances. Actual expansion coefficients must be somewhat larger than those typically
cited for uncorrected bond distances. Furthermore, the strongest and shortest bonds are
the ones that require the greatest thermal correction.

In the mineralogically important case when oxygen is the anion, Equation (10)
reduces to:

1000 = 4.0(4) Lﬂ] x 100 K! (11)

<

This simple relationship predicts relatively small linear thermal expansion for Si-O
bonds in SiO, tetrahedra (~4 x 10® K1), larger thermal expansion for bonds in trivalent
cation octahedra such as AlQg (~8 x 10 K'), and larger values for bonds in divalent
cation octahedra such as MgOg (~12 x 10 K™"). While admittedly simplistic and empiri-
cally based, this relation provides a useful first-order estimate of cation-anion bond
thermal expansion, and thus may serve as a benchmark for the evaluation of new high-
temperature structural data.

The case of negative thermal expansion. The mean separation of two atoms
invariably increases with increased thermal vibrations. Nevertheless, as noted in the
earlier section on thermal corrections to bond distances, uncorrected interatomic
distances based on fractional coordinates may be significantly shorter than the mean
separation. In the case of rigidly bonded atoms that undergo significant thermal motion,
this situation may result in negative thermal expansion of the structure (e.g. Cahn 1997).

Consider, for example, a silicate tetrahedral framework with relatively rigid Si-O
bonds, but relatively flexible Si-O-Si linkages. Increased thermal vibrations of the
bridging O atom may increase the average Si-O-Si angle, decrease R(SiO) and,
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consequently, reduce the mean Si-Si separation, thus imparting a negative bulk thermal
expansion to the crystal.

CHANGES IN BOND DISTANCE: COMPRESSIBILITY

The work, W, done when a force per unit area or pressure, P, acts on a volume, V, is
given by the familiar expression:

W=-PAV (12)

Both work and pressure are positive, so AV is constrained to be negative in all materials
under compression. The magnitude of these changes is directly related to interatomic
forces, so an analysis of structural changes with pressure may reveal much about these
forces.

Compressibility and bulk modulus. Compressibility, or the coefficient of pressure
expansion, B in units of GPa™, is defined in a way analogous to the coefficient of thermal
expansion (Eqgns. 6, 7 and 8):

. 1(ad
=& 13
Linear B, d(aP)T (13)
1 oV
= |2 14
Volume §, - [aP)T 14)
2 [@,-d)

M P,P)= 12 | = (P, - P)2 15
ean e, P (dl+d2){(P2—P,):l Pee, P (13)

The compressibility of any linear or volume element of a crystal structure may thus
be determined. The standard procedure for analyzing structural variations with pressure,
therefore, is to highlight the compressibility of specific cation-anion bonds or volume
elements that undergo significant change.

An important parameter that relates the change of volume with pressure is the bulk
modulus, K in units of GPa, which is simply the inverse of volume compressibility:

k=B, (16)

Some authors of high-pressure structural studies have also converted changes in bond
distances or other linear element into “linearized bulk moduli” or “effective bulk
modulus,” which are defined as:

K, =3B (17)

This fictive property facilitates direct comparison of linear changes within a volume
element of a structure (e.g. a cation coordination polyhedron) with the bulk modulus of
that volume element. This parameter also provides a way to compare the compression
behavior of 2- and 3-coordinated cations with those of volume elements in a structure.
For the record, however, in the description of structural variations with pressure we
generally favor the use of linear and volume compressibilities, which require no special
mathematical manipulation and are based on the intuitively accessible concept of a
fractional change per GPa.

Systematic variations of bond distance with pressure. An important observation of
high-pressure structure studies is that the average cation-anion bond compression in a
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Table 1. Bulk moduli of MgOy octahedra in oxides and silicates
PHASE FORMULA K (GPa) Reference
Periclase MgO 160(2) Hazen (1976b)
Karrooite MgTi,04 168(2) Yang & Hazen (1999)
Forsterite Mg,SiO, 135(15) Hazen (1976a)
Monticellite CaMgSiO, 150(10) Sharp et al. (1987)
Wadsleyite Y¥-Mg,SiO, 145(8) Hazen et al. (2000)
Diopside CaMgSi, O 135(20) Levien & Prewitt (1981)
Table 2. Bulk moduli of AlO, octahedra in oxides and silicates
PHASE FORMULA K (GPa) Reference
Corundum AL O, 254(2) Finger & Hazen (1978)
Spinel MgAl,O, 260(40) Finger et al. (1986)
Pyrope Mg;AlLS1;0,; 211(15) Zhang et al. (1998)
Grossular Ca;AL,S5i;0,, 220(50) Hazen & Finger (1978)
Kyanite ALSiO4 245(40) Yang et al. (1997b)

given type of cation coordination polyhedron is usually, to a first approximation,
independent of the structure in which it is found. Magnesium-oxygen (MgQOy) octahedra
in MgO, orthosilicates, layer silicates, and chain silicates, for example, all have
polyhedral bulk moduli within £10% of 150 GPa (Fig. 6, Table 1). Similarly, the bulk
moduli of aluminum-oxygen (AlOg) octahedra in many structures are within £10% of 235
GPa (Table 2). This observed constancy of average cation-anion compression is
especially remarkable, because individual bonds within a polyhedron may show a wide
range of compressibilities, as will be discussed below.

For silicate (SiO,) tetrahedra, the observed compressions in most high-pressure
structure studies, particularly for studies to pressures less than about S GPa, are on the
same order as the experimental errors. This situation means that many studies of
structural compression can only give a lower bound of the silicate tetrahedral bulk
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modulus. A significant exception is the study of pyrope by Zhang et al. (1998), who
achieved very high pressure with a He pressure fluid pressure medium. These authors
derived a bulk modulus for the Si site of 580+24 GPa, which provides the best constraint
available to date on the compression of silicate tetrahedra.

Numerous additional examples of observed polyhedral bulk moduli are recorded in
later chapters of this volume. These data provide the basis for development of empirical
bond distance-pressure relationships.

Bond distance-pressure relationships. Percy Bridgman (1923) was perhaps the first
researcher to attempt an empirical expression for the prediction of crystal bulk moduli
and, by implication, bond compressibilities. In his classic study of the compression of 30
metals, he found that compressibility was proportional to the 4/3rds power of molar
volume. The importance of mineral bulk moduli in modeling the solid Earth led Orson
Anderson and his coworkers (Anderson and Nafe 1965, Anderson and Anderson 1970,
Anderson 1972) to adapt Bridgman’s treatment to mineral-like compounds. For
isostructural materials, it is found that compressibility is proportional to molar volume,
or, as expressed in Anderson’s papers:

Bulk Modulus X Volume = constant (18)

A different constant is required for each isoelectronic structure type. Although this
relationship is empirical, theoretical arguments in support of constant KV may be derived
from a simple two-term bonding potential (Anderson 1972).

The same theoretical arguments used to explain the observed KV relationship in
isostructural compounds may be used to predict a bulk modulus-volume relationship for
cation coordination polyhedra. Hazen and Prewitt (1977a) found such an empirical trend
in cation polyhedra from oxides and silicates:

K,d’
V4

= constant (19)

<

where z, is the cation formal charge, d is the cation-anion mean bond distance, and K, is
the polyhedral bulk modulus. This expression indicates that structural changes with
pressure are closely related to polyhedral volume (i.e. &%), but are essentially independent
of cation coordination number or mass. Using molecular orbital techniques, Hill et al.
(1994) determined bond stretching force constants for a number of nitride, oxide and
sulfide polyhedra in molecules and crystals. These force constants were then employed to
successfully reproduce Equation (19). Hazen and Finger (1979, 1982) summarized
compression data for numerous oxides and silicates and proposed the constant:

K,d*
Z

B

=~ 750 + 20 GPa A® (20)

Experimentally, the best numerical values of the polyhedral bulk moduli are obtained for
the most compliant polyhedra. Therefore, small values of the bulk modulus have the
greatest precision.

Studies of compounds with anions other than oxygen reveal that different constants
are required. Thus, for example, Hazen and Finger (1982) systematized polyhedral bulk
moduli in numerous halides (including fluorides, chlorides, bromides, and iodides) with
the expression:
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Figure 7. The polyhedral bulk modulus—volume relationsip (Eqn. 28).
Polyhedral compressiblity is the inverse of polyhedral bulk modulus.
The expression d*/S’z.z, is an empirical term, where d is the cation-
anion bond distance, S is an ionicity term (see text), and z. and z, are
the cation and anion formal charges, respectively. Data are indicated by

A = tetrahedra, 0O = octahedra, O = 8-coordinated polyhedra.
The line is a weighted linear-regression fit constrained to pass through
the origin of all data tabulated by Hazen and Finger (1979). Four
circles corresponding to CsCl-type compounds fall significantly below
the line, as discussed in Hazen and Finger (1982).

K,d*
4

¢

~ 560 + 10 GPa A? (21)

A more general bulk modulus-volume expression is also provided by Hazen and Finger
(1982):
K,d’
S’z z

cTa

~ 750 GPa A’ (22)

where z, is the formal anionic charge and S is the same empirical “ionicity” term
described previously in the empirical expression for bond thermal expansivity. This
relationship is illustrated in Figure 7. Values of > are 0.5 for oxides and silicates; 0.75
for halides; 0.40 for sulfides, selenides and tellurides; 0.25 for phosphides, arsenides and
antimonides; and 0.20 for carbides and nitrides. It is intriguing that, while the physical
significance of §? is not obvious, the same values apply to the independent formulations
of bond compressibility and thermal expansivity.
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Anomalous bond compressibilities. While cation-anion bonds in most crystal
structures conform to the empirical bulk modulus-volume relationship, numerous
significant anomalies have been documented, as well. These anomalies, which provide
important insights to the nature of crystal compression, fall into several categories.

1.

Differences in Bonding Character: Hazen and Finger (1982) noted a number of
these anomalies, including the ZnO, tetrahedron in zincite (ZnO) and the VO
octahedron in V,0;, an unusual oxide with metallic luster. These polyhedra,
which are significantly more compressible than predicted by Equation (22), may
also be characterized by more covalent bonding than many other oxides and
silicates. This observation suggests that the empirical ionicity term, $?, may be
less than 0.50 for some oxygen-based structures.

. Overbonded or Underbonded Anions: The most common bond distance-

compression anomalies occur in distorted polyhedra in which one or more
coordinating anion is significantly overbonded or underbonded. A typical
example is provided by the All octahedron in sillimanite (Al,SiOs), which was
studied at pressure by Yang et al. (1997a). This centric polyhedron has two
unusually long 1.954 A bonds between All and the extremely overbonded OD
oxygen, which is coordinated to one 'VSi, one 'VAl and one Y'Al. The
compressibility of Al1-OD is twice that of other Al-O bonds (Fig. 8), yielding a
polyhedral bulk modulus of 162+8 GPa. This value is significantly less than the
predicted 300 GPa value (Eqn. 22) and the observed 235425 GPa value typical of
other oxides and silicates (Table 2).

1.92

1.80

Al-O bond length (A)

1.88 - -

1.86 . I 1 1 3 L 1 1 1 1

P (GPa)

Figure 8. Al-O distances versus pressure in sillimanite (after
Yang et al. 1997a).

A similar situation occurs in the Mg2 octahedron of orthoenstatite (MgSiO,), which
was investigated at high-pressure by Hugh-Jones and Angel (1994). The unusually long
bond (2.46 A) between Mg2 and overbonded O3B compresses a remarkable 8% between
room pressure and 8 GPa (Fig. 9). This anomalous Mg2-O3B bond compression
contributes to an octahedral bulk modulus of ~60 GPa, compared to the predicted value
of 160 GPa (Eqn. 22) and typical observed 150£15 GPa values for other MgOg groups
(Table 1). This bond distance, furthermore, displays a pronounced curvature versus
pressure—a feature rarely observed in other structures.
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3. Second-Nearest Neighbor Interactions: Of the approximately two dozen
structure types examined in developing polyhedral bulk modulus-volume
relationships, halides with the cubic CsCl structure stand out as being
significantly less compressible than predicted by Equation (22) (see Fig. 7). The
CsCl structure, with eight anions at the corners of a unit cube, and a cation at
the cube’s center, is unique in the high degree of polyhedral face sharing and
the consequent short cation-cation and anion-anion separations. In CsCl-type
compounds the cation-cation distance is only 15% longer than cation-anion
bonds, in contrast to the 50 to 75% greater separation in most other structure
types. It is probable, therefore, that Equation (22), which incorporates only the
bonding character of the primary coordination sphere, is not valid for structures
in which extensive polyhedral face sharing results in significant second-nearest
neighbor interactions.
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=} Figure 9. Mg-O distances versus pressure in
3 2.3 orthoenstatite (after Hugh-Jones and Angel
- 1994),
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Table 3. Bulk moduli of Fe**O; octahedra in oxides and silicates
PHASE FORMULA K (GPa) Reference
Wiistite Fe,,O 154(2) Hazen (1981)
IImenite FeTiO, 140(10) Weschler & Prewitt (1984)
Fayalite Fe,SiO, 130(15) Kudoh & Takeda (1986)
Fe-Wadsleyite v-Fe,Si0, ~150 Hazen et al. (2000)
Hedenbergite CaMg8i,04 150(7) Zhang et al. (1997)
Orthoferrosilite Fe,Si,0¢ 135(10) Hugh-Jones et al. (1997)

A subtler example of this anomalous behavior may be presented by the Fe?*Oq
octahedron in iron silicate spinel (Fe,SiO,), for which high-pressure structural data
were reported by Finger et al. (1979). Ferrous iron octahedra in many oxides and
silicates display bulk moduli of 140£15 GPa (Table 3), in close agreement with the
value of 150 GPa suggested by the polyhedral bulk modulus-volume relationship
(Eqn. 22). However, the octahedron in iron silicate spinel has a significantly greater
bulk modulus of 190£20 GPa. Hazen (1993) has proposed that the anomalous stiffness
of this site may result from the unusually short 2.9 A Fe-Fe separation across shared
octahedral edges in this compound—a distance only about 34% longer than the Fe-O
separation.
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POLYHEDRAL VARIATIONS

Polyhedral volumes may be used to calculate polyhedral thermal expansivity and
compressibility in the same way that temperature-volume and pressure-volume data are
used to calculate equations of state (see Angel, this volume). In general, however, these
expressions of approximate polyhedral volume change are also easily calculated from
linear changes. For polyhedra that do not undergo severe distortion, the polyhedral
thermal expansivity and compressibility are given by:

1 (av) 3(ad
= ~ 2[99 23
Ty [aTjP d[aTJP (23)

B,= - (ﬂ) 23 (éﬁ) @4
V\oP/r d\oP/r
where 1/d(0d/dT) is the mean linear thermal expansivity, etc. These relationships also
allow the calculation of “effective” volumetric polyhedral parameters for a planar atomic
group or for an individual bond. Thus, for example, if the mean C-O compressibility of a
CO; group is known, then the effective polyhedral compressibility may be calculated
from Equation (24).

1. A common, though by no means universal, trend is for highly distorted
polyhedra to become more regular at high pressure (and more distorted at high
temperature) as a consequence of differential bond compression (or thermal
expansion). In numerous polyhedra, including the sillimanite and orthoenstatite
examples cited above, longer bonds tend to be significantly more compressible
(or expansible) than shorter bonds. Other examples of this behavior include the
AlOy4 octahedron in corundum (Al,O,; Finger and Hazen 1978), the LiOg
octahedron in lithium-scandium olivine (LiScSiO4; Hazen et al. 1996), and all
three MOy octahedra in wadsleyite (B-Mg,SiO,; Hazen et al. 2000). Thus,
quadratic elongation commonly decreases with pressure (or increases with
temperature).

2. Counter examples, though unusual, do arise. The shortest M1-O2 bond in the
M10q octahedron of karrooite (MgTi,0s; Yang and Hazen 1999), for example, is
most compressible, whereas the longest M1-O3 bond is least compressible,
though the differences in compressibility are only about 20%. This situation
apparently arises from the restrictive juxtaposition of octahedral shared edges in
this pseudobrookite-type structure.

Changes in interpolyhedral angles

Framework silicates such as quartz or feldspar can display large compressibilities
even though individual cation-anion distances are essentially unchanged as a result of
cation-anion-cation bond angle bending. The relative flexibility of such interpolyhedral
angles has received considerable study, both experimental and theoretical. Downs and
Palmer (1994), for instance, showed that the silica polymorphs quartz, cristobalite and
coesite all displayed the same volume change for a given change in Si-O-Si angle.

Geisinger and Gibbs (1981) applied ab initio molecular orbital methods to document
the relative energies of 7-O-T angles, where 7 is a tetrahedrally-coordinated cation, such
as Si, Al, B, or Be, and O is a bridging oxygen atom, either 2- or 3-coordinated. Their
results, which were presented in a series of graphs of total energy versus 7-O-T bond
angle for H¢SiTO; and H,SiTO, clusters, suggest that the flexibility of the angle is
strongly dependent on both T and the oxygen coordination. They calculate, for example,
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that 7-O-T angles with a third cation coordinated to the bridging oxygen are much more
rigid than for angles with two-coordinated oxygen. Si-O-Al and Si-O-B angles,
furthermore, tend to be more flexible than Si-O-Si angles.
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These theoretical predictions are largely born out by high-pressure structural studies
of feldspar. In low albite (NaAlSi;Og), Downs et al. (1994) observed that the greatest
decreases in Si-O-T angles occur for the Si-OC0-Al and Si-OBO-Al angles, whereas all
Si-O-Si angles show essentially no decrease with increasing pressure (Fig. 10). Similarly,
in reedmergnerite (NaBSi;O;), Downs et al. (1999) reported that Si-OC0-B and
Si-OBO-B angles undergo the greatest decrease with pressure (Fig. 11). Furthermore,
microcline (KAlSi;Oy), with a larger molar volume than albite, has a larger bulk modulus
than albite. This result is in disagreement with the trends suggested by Bridgman (1923)
and Equation (24). Downs et al. (1999) suggest that the cause of this discrepancy is that
all the bridging bonds in microcline are bonded to the large K cation, while this is not the
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case in albite with the smaller Na cation. Consequently, the bridging Si-O-T angles are
stiffer in microcline. In spite of these qualitative trends, however, no quantitative
estimates of bond angle bending, and associated compression, have yet been proposed.

VARIATION OF TEMPERATURE FACTORS WITH PRESSURE

Finger and King (1978) demonstrated that pressure has a small, but possibly
measurable, effect on the isotropic temperature factor. The average energy, E, associated
with a vibrating bond of mean ionic separation, d, and mean-square displacement <>,

(r«d),is:
2
z.z,e
2d°
where z, and z, are cation and anion charges, and g is a repulsion parameter (Karplus and

Porter 1970). The isotropic temperature factor, B, is proportional to the mean-square
displacement:

B = 8n<r*> 26)

Therefore, combining Equations (25) and (26),

E~ (ad —2) <r*> 25)

2
B
= 2282 (ad - 2) Q7
16z °d
If it is assumed that the average energy, E, and the repulsion parameter, a, are
independent of pressure, then the temperature factor at pressure, Bp, is related to the
room-pressure temperature factor, By, as follows:

(ad, ~2)d}
=B 7
(ad, —2)d;
In the case of NaCl at 3.2 GPa, Finger and King (1978) predicted a 5.7% reduction in the
temperature factors of Na and Cl at high pressure. The observed reductions of

approximately 10+5% provided evidence for the proposed effect of pressure on amplitude
of atomic vibrations.

Bp (28)

DISTORTION INDICES BASED ON CLOSE PACKING

Thompson and Downs (1999, 2001) have proposed that the temperature or pressure
variations of structures based on approximately close-packing of anions can be described
in terms of closest-packing systematics. A parameter, Ugp, that quantifies the distortion
of the anion skeleton in a crystal from ideal closest-packing is calculated by comparing
the observed anion arrangement to an ideal packing of the same average anion-anion
separation. Thus, Ucp is a measure of the average isotropic displacement of the observed
anions from their ideal equivalents. An ideal closest-packed structure can be fit to an
observed structure by varying the radius of the ideal spheres, orientation, and translation,
such that Ugp is minimized. Thompson and Downs fit ideal structures to the MIM2TO,
polymorphs, pyroxenes, and kyanite. They analyzed the distortions of these crystals in
terms of the two parameters, Uqp and the ideal radius, and characterized changes in
structures due to temperature, pressure, and composition in terms of these parameters. In
general, they propose that structures that are distorted from closest-packing will show a
decrease in both Ucp and oxygen radius with pressure, while structures that are already
closest-packed will only compress by decreasing the oxygen radius.
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COMPARISONS OF STRUCTURAL VARIATIONS
WITH TEMPERATURE AND PRESSURE

Hazen (1977) proposed that temperature, pressure and composition may behave as
structurally analogous variables in structures where atomic topology is primarily a
function of molar volume. Subsequent crystallographic studies have demonstrated that,
while this relationship holds for some simple structure types, most structures display
more complex behavior. In these cases, deviations from the “ideal” behavior may provide
useful insights regarding structure and bonding. In the following section, therefore, we
review the structural analogy of temperature, pressure and composition, and examine the
so-called “inverse relationship” between temperature and pressure, as originally proposed
by Hazen (1977) and Hazen and Finger (1982).

Structurally analogous variables

Hazen (1977) proposed that geometrical aspects of structure variation with
temperature, pressure or composition are analogous in the following ways:

1. The fundamental unit of structure for the purposes of the analogy is the cation
coordination polyhedron. For a given type of cation polyhedron, a given change
in temperature, pressure or composition (7, P or X) has a constant effect on
polyhedral size, regardless of the way in which polyhedra are linked. Polyhedral
volume coefficients o, B, and v, are thus independent of structure to a first
approximation. We have seen above that in the case of o, and 3, these polyhedral
coefficients are similar to about +10% in many compounds, but that significant
anomalies are not uncommon.

2. Polyhedral volume changes with 7, P or X may be estimated from basic structure
and bonding parameters: cation-anion distance (d), cation radius (r), formal
cation and anion charge (z,and z,) and an ionicity term (S°).
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3. As a corollary, in structures with more than one type of cation polyhedron,
variations of 7, P or X all have the effect of changing the ratios of polyhedral
sizes.

T-P-X surfaces of constant structure

All crystalline materials may be represented in 7-P-X space by surfaces of constant
molar volume (isochoric surfaces). One consequence of the structural analogy of
temperature, pressure and composition is that for many substances isochoric surfaces are
also surfaces of constant structure in 7-P-X space (Hazen 1977). Consider, for example,
the simple fixed structure of the solid solution between stoichiometric MgO and FeO. A
single parameter, the unit-cell edge, completely defines the structure of this NaCl-type
compound. Isochoric surfaces are constrained to be isostructural surfaces in 7-P-X space
(Fig. 12), because variations in temperature, pressure or composition all change this
parameter. Isochoric or isostructural surfaces may be approximately planar over a limited
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Figure 12. Isostructufal surfaces for (Mg,Fe)O in T-P-X space (after
Hazen and Finger 1982).

range of temperature, pressure and composition; however, o,, B,, and v, generally vary
with 7, P and X, thus implying curved surfaces of constant volume.

Isostructural surfaces exist for a large number of compounds. The Mg-Fe silicate
spinel, y-(Mg,Fe),Si0,, for example, has a cubic structure with only two variable
parameters—the unit cell edge and the u fractional coordinate of oxygen. In this case, the
structure is completely defined by the two cation-oxygen bond distances: octahedral
(Mg,Fe)-O and tetrahedral Si-O. The size of the silicon tetrahedron is relatively constant
with temperature, pressure and Fe/Mg octahedral composition. Consequently,
isostructural 7-P-X surfaces for the octahedral component of the silicate spinels will also
approximate planes of constant spinel structure. Note that the isostructural surfaces of
Mg-Fe oxide and silicate spinel will be similar because both depend primarily on the size
of the (Mg,Fe) octahedron.

All isostructural surfaces have certain features in common. Consider the slopes of
such a surface:

P oP oT
(ﬁl,: (ﬁ)w and (&L G2

where S designates partial differentials at constant structure (as well as constant molar
volume), and +0.X is defined as substitution of a larger cation for a smaller one. It follows

that:
oP oP oT
[a—Tl‘x >0 (33) (—&lj >0 (34) (B—Xl_p <0 (35)

Even relatively complex structures, such as the biaxial alkali feldspars,
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(K,Na)AlSi;Oq, may have 7-P-X surfaces that approximate isostructural surfaces (Hazen
1976¢). By contrast, however, in many structures with more than two different types of
cation polyhedra, a given change in 7, P or X will commonly not be cancelled by any
possible combination of changes of the other two variables, unless multiple chemical
substitutions are invoked. For example, the cell parameters of calcite, CaCOs, display
unique values at all combinations of P and T, making it an ideal in sifu thermometer and
barometer. Multiple compositional variables, of course, increase the dimensions of the
T-P-X space under consideration.

THE INVERSE RELATIONSHIP BETWEEN
COMPRESSION AND THERMAL EXPANSION

In numerous structures, geometrical changes upon cooling from high temperature are
similar to those upon compression. In other words, structural variations due to changes in
temperature may be offset by variations due to changes in pressure (Fig. 13). This
common type of structural behavior, as first observed in sanidine (Hazen 1976c¢), and
illustrated in Figure 14 for the u parameter of silicate spinels, Figure 15 for the unit-cell
axes of chrysoberyl, and Figure 16 for the unit-cell parameters of low albite, has been
called the “inverse relationship” by Hazen and Finger (1982). The inverse relationship
may obtain when:

1. All polyhedra in a structure have similar ratios of expansivity to compressibility;

i.e. /P is a constant for all polyhedra of the structure; or,
2. One polyhedron is relatively rigid (o0 and [ are small) compared to the other
polyhedra, which have similar o/f.

IDEAL CASE

Increasing /

Temperature -

4 + ' . : 4 ' } Figure 13. The idealized inverse effect
Struciurol Parameter of temperature and pressure on struc-

ture (after Hazen and Finger 1982).
4creosing

Pressure

< < —
T

[=)

These conditions are fulfilled by numerous compounds, including most materials
with only one type of cation polyhedron, and many silicates with only one type of
polyhedron other than the relatively rigid Si tetrahedra. From Equations (29) and (30) for
polyhedral o and p:

2 <90 (%jbarﬁc (36)
B d

Thus, the “inverse relationship” should obtain if #/d® is similar for all cation
polyhedra in a structure. Coincidentally, several common polyhedra in rock-forming
minerals have similar observed ratios of o to B. Octahedral Mg, Fe?*, Al and Fe’* all
have a/f} = 65 bar/°C. Thus many minerals display the inverse relationship. Values of
predicted o and § for many common cation polyhedra are illustrated in Figure 17.

Note that the pressure required to offset a 1°C increase in temperature is not the
same for all compounds. In the case of MgO and Mg,SiO,, approximately 75 bars offset
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1°C, while alkali feldspar (NaAlSi;Og) requires only 20 bars to offset 1°C. Note that
(9P/9T)g for many minerals is greater than the average 25 bar/°C geotherm of the
Earth’s crust and upper mantle. Thus many common minerals have greater molar
volumes at depth in the Earth than at the surface.

Rutile remains a curious exception to the ideal inverse relationship. Rutile-type TiO,
is tetragonal with only one type of polyhedron (Y'Ti*"). Rutile should follow the trend
observed in other simple oxides, but a plot of the axial ratio ¢/a versus V/V, (Fig. 18)
shows a more complex behavior: ¢/a increases both with T and P. Surveys of several
rutile-type compounds at temperature (Rao 1974) and pressure (Hazen and Finger 1981)
reveal that although most isomorphs have increasing ¢/a with pressure, the temperature
response is highly variable. Therefore, the temperature variation of rutile-type
compounds is not controlled by structure, because all of these compounds have the same
polyhedral arrangement.
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OPPORTUNITIES FOR FUTURE RESEARCH

In spite of the growing body of data on crystal structure variations with temperature
and pressure, our general understanding of comparative crystal chemistry remains at a
largely empirical state. Significant opportunities exist for advancing the field, both
experimentally and theoretically. A few of these promising research areas are outlined

below.
Interatomic potentials

The pressure response of crystal structures provides direct information about
bonding potential. Consider, for example, a simple two-term expression for the total bond
potential energy, U, between a cation and anion:

2 B
zze | B (37)
d"
where e is the charge on an electron, d is the cation-anion distance, and B and n are
repulsive energy constants that depend on the electronic structure of the two ions. Total
site energy, the energy required to separate a particular ion, j, to an infinite separation

Ubond =
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Figure 17. o versus [ for oxygen-based polyhedra (after Hazen and Prewitt 1977a).
from its equilibrium position in a crystal, is then given by the sum of an attractive and a
repulsive term:

A./e2 ul i
7 + ZB,I. /dy (38)

U}:

where 4; is the dimensionless Madelung constant (e.g. Ohashi and Burnham 1972), which
must be calculated for each site, and dj is the nearest-neighbor cation-anion distance.

If a pressure acts on a cross-sectional area approximately equal to the square of the
interatomic distance (d”) then the net force on the bond is Fp = Pd. At equilibrium
distance the sum of the bonding forces is zero:

U,

ZivFE =0
adj P (39)
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Combining this expression with Equation (37):

2

A(;; d:lfl) +Pd’ (40)
or, ,

P= ;% - A;; (41)
Therefore,

_%(E): 1/(n+3) (42)

P+[(n-1)/(n+ 3)](%6;)

Thus, if values of bonding parameters #, B, d; and 4; are known, then bond com-
pressibility may be calculated. Conversely, it may be possible to derive these or other
empirical bonding parameters from bond compressibility data. To our knowledge, only
Waser and Pauling (1950) have undertaken a systematic effort to extract this sort of
bonding information from high-pressure structure data.

Molecular structures and intermolecular forces

Hazen and Finger (1985) suggested that three principal compression mechanisms—
bond compression, cation-anion-cation bond angle bending, and intermolecular com-
pression—account for most volume change in crystals. Most previous high-pressure or
high-temperature structure studies have focused on dense, mineral-like compounds, in
which bond compression and angle bending are the dominant compression mechanisms.
Much less effort has been devoted to molecular crystals, though the body of work on
condensed molecular crystals, particularly at high pressure is growing (see Hemley and
Dera, this volume).

An opportunity thus exists both for systematic studies of molecular crystals under
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pressure, and for a general synthesis of the behavior of these phases at extreme
conditions.

Additional physical properties

Although the most definitive measurements on high-pressure phases are obtained
from diffraction measurements, other techniques can provide additional information that
often is essential for understanding crystal behavior in the high pressure-temperature
regime. Among the most useful techniques are various forms of spectroscopy, including
Raman, infrared, and Mossbauer. These tools are being used in many laboratories to
detect phase transitions and can provide information about short-range interactions that
are masked in diffraction studies, which focus on longer-range properties of materials.
Much future research will depend on integration of all of these techniques to give a broad
picture of how minerals and their analogs behave as functions of pressure and
temperature.

Another spectroscopic technique that has been used recently to give additional
crystal-chemical information about iron oxides and sulfides at high pressure is X-ray
spectroscopy. In this technique, synchrotron X-rays are used to explore whether the FeKp
peak is present in the spectra from iron oxide specimens. If it is present, the iron in the
sample is assumed to be in the high-spin state; if it is absent, then iron is in the low-spin
state. The primary crystal-chemical result is that the interatomic distances are different in
the two situations and this difference, in turn, reveals how the material is responding to
pressure and/or temperature changes. An example of the application of this spectroscopy
to FeO is described by Badro et al. (1999).

Synchrotron-related research

Mao and Hemley (1998) reviewed the wide range of experiments that are being
conducted under high pressures and temperatures and illustrated some of the new
opportunities that are now open through the use of synchrotron radiation. The availability
of synchrotron sources to the geosciences high-pressure community as well as to those in
materials science and physics is having a major impact on the field and is enabling many
different kinds of experiments that heretofore were impossible.

Powder diffraction. Diffraction experiments are now possible on polycrystalline
samples to pressures in the megabar range and temperatures of thousand of degrees. This
extended experimental range is made possible by new diamond-anvil cell designs
together with laser heating of the samples. Further advances are being made in recording
diffraction patterns in real time along with pressure and temperature applications. One
problem often encountered in these experiments is that it is difficult to characterize
completely the crystal structures of the phase or phases that appear as pressure and
temperature increase. Because the diffraction patterns are often not of high quality and it
is difficult to know if the sample is single- or multiple-phase, identification of the crystal
structure can be a complex procedure. An example of this problem is the high-pressure
structure of Fe,0;. Staun Olsen et al. (1991) reported the structure of Fe,O; above
50 GPa to be orthorhombic perovskite, but later work by Pasternak et al. (1999) using
both X-ray diffraction and Mgssbauer spectroscopy maintains that the structure type is
Rh,0; II (Shannon and Prewitt 1970). The problem is that the calculated diffraction
patterns for these two possible structures are almost identical and it is thus very difficult
to distinguish between them with poor quality X-ray data. Another complication is that,
even if the phase in question does have the same structure as an ambient-pressure
material, its lattice parameters may be very different. Thus, it will be necessary to
develop better instrumental techniques and more versatile computer software in order to
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solve these problems.

Single-crystal diffraction. One of the most important frontiers in high-temperature
and high-pressure crystal chemistry is the expansion of experimental environments to
greater extremes. For most of the past 25 years, the limit for single-crystal high-pressure
experiments was about 10 GPa because the beryllium backing plates used in the Merrill-
Bassett diamond cell would fail at that pressure. New cell designs and higher-energy
X-rays available at synchrotrons, however, are leading the way to experiments at 50 GPa
and higher (Allan et al. 1996, Zhang et al. 1998, Miletich et al. 1999). With appropriate
instrumentation, software, and human effort, it should be possible to conduct a whole
new range of high-pressure experiments and to obtain unambiguous information about
the variation of crystal structures at these extreme conditions.
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