1 Devonian landscape heterogeneity recorded by a giant fungus

- 2 **C. Kevin Boyce**
- 3 Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Ave, Chicago,
- 4 Illinois 60637, USA
- 5 Carol L. Hotton
- 6 Department of Paleobiology, NHB MRC 121, National Museum of Natural History, Washington,
- 7 D.C. 20560, USA
- 8 Marilyn L. Fogel
- 9 George D. Cody
- 10 Robert M. Hazen
- 11 Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW,
- 12 Washington, D.C. 20015, USA
- 13 Andrew H. Knoll
- 14 Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street,
- 15 Cambridge, Massachusetts 02138, USA
- 16 Francis M. Hueber
- 17 Department of Paleobiology, NHB MRC 121, National Museum of Natural History, Washington,
- 18 D.C. 20560, USA
- 19 ABSTRACT
- 20 The enigmatic Paleozoic fossil *Prototaxites* Dawson 1859 consists of tree-like trunks as
- 21 long as 8 m constructed of interwoven tubes <50 µm in diameter. *Prototaxites* specimens from
- 22 five localities differ from contemporaneous vascular plants by exhibiting a carbon isotopic range,
- 23 within and between localities, of as much as 13‰ δ^{13} C. Pyrolysis–gas chromatography–mass

24	spectrometry highlights compositional differences between Prototaxites and co-occurring plant				
25	fossils and supports interpretation of isotopic distinctions as biological rather than diagenetic in				
26	origin. Such a large isotopic range is difficult to reconcile with an autotrophic metabolism,				
27	suggesting instead that, consistent with anatomy-based interpretation as a fungus, Prototaxites				
28	was a heterotroph that lived on isotopically heterogeneous substrates. Light isotopic values of				
29	Prototaxites approximate those of vascular plants from the same localities; in contrast, heavy				
30	extremes seen in the Lower Devonian appear to reflect consumption of primary producers with				
31	carbon-concentrating mechanisms, such as cryptobiotic soil crusts, or possibly bryophytes.				
32	Prototaxites biogeochemistry thus suggests that a biologically heterogeneous mosaic of primary				
33	producers characterized land surfaces well into the vascular plant era.				
34	Keywords: Prototaxites, terrestrial ecosystems, isotope geochemistry, Paleozoic, paleobotany,				

35 paleoecology.

36 INTRODUCTION

37 From its origin in the Late Silurian more than 420 m.y. ago until the evolution of large 38 trees ~50 m.y. later, *Prototaxites* was the largest organism known to have lived on land (Fig. 1A; GSA Data Repository Fig. DR1¹). It produced unbranched trunks as long as 8 m and 1 m in 39 40 diameter, constructed only of a relatively homogenous tissue of interwoven tubes of three size 41 classes, 5–50 µm in diameter (Fig. 1B). Although originally described as a conifer (Dawson, 42 1859), its distinctive anatomy is utterly unlike any living or fossil land plant. Subsequent 43 interpretations as a lichen, a red, green, or brown alga, or a fungus (Carruthers, 1872; Church, 44 1919; Jonker, 1979; Hueber, 2001) are also problematic. For example, interpretation of 45 Prototaxites as a giant fungal fruiting body (Hueber, 2001) accounts for its hyphae-like anatomy, 46 but remains controversial (e.g., Selosse, 2002) because its sheer size and lack of clear

47	reproductive structures are more difficult to reconcile. The identity of <i>Prototaxites</i> may never be				
48	proven by anatomy alone (save for consensus it was not a vascular plant); its bizarre form is the				
49	very source of its enduring interest. Carbon isotopic and organic analyses of Prototaxites fossils				
50	provide a morphology-independent assessment of its evolutionary relationships and indirect				
51	evidence for the nature of its surrounding ecosystem.				
52	The organic composition of fossils can be influenced as much by locality of preservation				
53	as by original biology (Abbott et al., 1998), but comparison of multiple specimens within				
54	individual localities controls for factors that might influence preserved C isotopic or organic				
55	chemistry, including diagenesis and variations in climate, background inorganic ${}^{12}C/{}^{13}C$, or				
56	atmospheric CO ₂ concentration (Boyce et al., 2002, 2003). To this end, organic and isotopic				
57	comparisons were made between Prototaxites and associated vascular plants (two vascular plant				
58	derived coals, silicified Callixylon, and carbonate-permineralized Psilophyton) within one Upper				
59	Devonian and two Lower Devonian localities (ca. 375 Ma and 405–400 Ma, respectively).				
60	Prototaxites isotopes also were analyzed from two Lower Devonian localities for which no other				
61	fossils were associated. Carbon isotopes reflect in part the organism's metabolism. Organic				
62	analyses further constrain the risk that isotopic composition was unduly affected by differential				
63	taphonomic history within a locality. All Prototaxites samples are permineralized by silica and				
64	preserve anatomy in fine detail, with organic material confined to the tube walls (e.g., Fig. 1C).				
65	Samples for isotopic analysis were treated in acid to eliminate any carbonate. Further				
66	information concerning samples and methods is in the GSA Data Repository (see footnote 1).				
67	Comparative Geochemistry of Fossils				
68	In the Upper Devonian Kettle Point flora, Prototaxites is isotopically similar to the				

69 associated woody plant *Callixylon* (and Devonian plants more broadly; Beerling et al., 2002;

70	Boyce et al., 2003), consistent with either a C ₃ -like photosynthetic organism or a heterotroph that				
71	consumed C ₃ plants (Fig. 2). In contrast, <i>Prototaxites</i> samples from the Lower Devonian				
72	(Emsian, ca. 400 Ma) Gaspé south shore flora are either isotopically similar to co-occurring				
73	Psilophyton and coal or as much as 11‰ heavier. This enormous range is replicated in other				
74	Lower Devonian localities: Prototaxites isotopes resemble those of C3 plants at two localities,				
75	but are 8‰ heavier than a surrounding coal composed of spiny vascular plant axes at a third				
76	locality (Fig. 2).				
77	Molecular structural information derived from pyrolysis-gas chromatography-mass				
78	spectrometry of the Gaspé coal (Fig. 3) is consistent with a predominance of lignin-derived				
79	geopolymers. The strong prevalence of alkylphenols over dihydroxy aromatics (note trace of				
80	eugenol) as well as a complete lack of levoglucosan (a pyrolytic product of cellulose) indicates				
81	that the original peat was altered diagenetically to high-rank subbituminous to low-rank high				
82	volatile bituminous coal. Although Gaspé Prototaxites samples also yield predominantly				
83	alkylbenzene, alkylphenol, and alkylnaphthalene moieties, their relative distributions are distinct				
84	from the coal and are dominated by alkyl benzenes rather than phenol derivatives. Prototaxites				
85	and the vascular plant Callixylon are similarly distinct at the Upper Devonian locality (Fig. 3). A				
86	robust molecular interpretation linking original biochemistry to the specific distribution of				
87	molecular species in diagenetically altered material is incomplete even in the well-studied system				
88	of vascular plant-derived coal (Hatcher and Clifford, 1997), much less the various potential				
89	relatives of Prototaxites. However, this consistent predominance of akyl-phenols versus alkyl-				
90	benzenes in organic matter from the same strata and geologic histories must reflect derivation				

91 from biochemically distinct original source organisms.

92	Extensive taphonomic alteration of organic C isotopic ratios typically involves loss of					
93	compounds or constituent functional groups with distinct biosynthetic fractionations (Benner et					
94	al., 1987). <i>Prototaxites</i> samples spanning a C isotopic range from -15.6‰ to -26.6‰ are all					
95	similarly dominated by alkyl benzenes and are clearly differentiated from a local, vascular plant-					
96	derived coal, reflecting differences maintained from their original biochemical inheritance. Any					
97	extreme and divergent taphonomic modification between specimens—such as methanogenic					
98	decay of some, but not all of the individuals-also should have been reflected in the final organic					
99	composition, but is not seen. This, along with the uniformly high quality of anatomic					
100	preservation, argues that isotopically distinct populations record underlying features of original					
101	physiology, not differential taphonomy.					
102	Biological Affinity of <i>Prototaxites</i>					
103	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic					
103 104	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic discriminations can be identified: lighter values are consistent with terrestrial C ₃ photosynthesis					
103 104 105	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic discriminations can be identified: lighter values are consistent with terrestrial C ₃ photosynthesis and heavier values are consistent with various groups with carbon-concentrating mechanisms.					
103 104 105 106	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic discriminations can be identified: lighter values are consistent with terrestrial C ₃ photosynthesis and heavier values are consistent with various groups with carbon-concentrating mechanisms. Nonetheless, the overall isotopic range of the <i>Prototaxites</i> population is difficult to reconcile					
103 104 105 106 107	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic discriminations can be identified: lighter values are consistent with terrestrial C ₃ photosynthesis and heavier values are consistent with various groups with carbon-concentrating mechanisms. Nonetheless, the overall isotopic range of the <i>Prototaxites</i> population is difficult to reconcile with autotrophy. C ₄ and CAM [[Q: spell out CAM first time used?]] plants concentrate carbon,					
103 104 105 106 107 108	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic discriminations can be identified: lighter values are consistent with terrestrial C ₃ photosynthesis and heavier values are consistent with various groups with carbon-concentrating mechanisms. Nonetheless, the overall isotopic range of the <i>Prototaxites</i> population is difficult to reconcile with autotrophy. C ₄ and CAM [[Q: spell out CAM first time used?]]plants concentrate carbon, but in neither does isotopic variation resemble that of <i>Prototaxites</i> (O'Leary, 1988). Macrophytic					
103 104 105 106 107 108 109	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic discriminations can be identified: lighter values are consistent with terrestrial C ₃ photosynthesis and heavier values are consistent with various groups with carbon-concentrating mechanisms. Nonetheless, the overall isotopic range of the <i>Prototaxites</i> population is difficult to reconcile with autotrophy. C ₄ and CAM [[Q: spell out CAM first time used?]] plants concentrate carbon, but in neither does isotopic variation resemble that of <i>Prototaxites</i> (O'Leary, 1988). Macrophytic marine algae can accommodate a larger range of values (Raven et al., 2002), but <i>Prototaxites</i> is					
103 104 105 106 107 108 109 110	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic discriminations can be identified: lighter values are consistent with terrestrial C ₃ photosynthesis and heavier values are consistent with various groups with carbon-concentrating mechanisms. Nonetheless, the overall isotopic range of the <i>Prototaxites</i> population is difficult to reconcile with autotrophy. C ₄ and CAM [[Q: spell out CAM first time used?]] plants concentrate carbon, but in neither does isotopic variation resemble that of <i>Prototaxites</i> (O'Leary, 1988). Macrophytic marine algae can accommodate a larger range of values (Raven et al., 2002), but <i>Prototaxites</i> is usually preserved in terrestrial deposits (Griffing et al., 2000; Hotton et al., 2001), and both					
103 104 105 106 107 108 109 110 111	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic discriminations can be identified: lighter values are consistent with terrestrial C ₃ photosynthesis and heavier values are consistent with various groups with carbon-concentrating mechanisms. Nonetheless, the overall isotopic range of the <i>Prototaxites</i> population is difficult to reconcile with autotrophy. C ₄ and CAM [[Q: spell out CAM first time used?]] plants concentrate carbon, but in neither does isotopic variation resemble that of <i>Prototaxites</i> (O'Leary, 1988). Macrophytic marine algae can accommodate a larger range of values (Raven et al., 2002), but <i>Prototaxites</i> is usually preserved in terrestrial deposits (Griffing et al., 2000; Hotton et al., 2001), and both ecological and geochemical arguments suggest that it was subaerial (Niklas, 1976; Edwards and					
 103 104 105 106 107 108 109 110 111 112 	For each <i>Prototaxites</i> sample, photosynthetic organisms with similar isotopic discriminations can be identified: lighter values are consistent with terrestrial C ₃ photosynthesis and heavier values are consistent with various groups with carbon-concentrating mechanisms. Nonetheless, the overall isotopic range of the <i>Prototaxites</i> population is difficult to reconcile with autotrophy. C ₄ and CAM [[Q: spell out CAM first time used?]] plants concentrate carbon, but in neither does isotopic variation resemble that of <i>Prototaxites</i> (O'Leary, 1988). Macrophytic marine algae can accommodate a larger range of values (Raven et al., 2002), but <i>Prototaxites</i> is usually preserved in terrestrial deposits (Griffing et al., 2000; Hotton et al., 2001), and both ecological and geochemical arguments suggest that it was subaerial (Niklas, 1976; Edwards and Richardson, 2000; Hueber, 2001). Moreover, the broad isotopic spread of algae is related to					

114 CO₂—unlikely to be encompassed by a single population, particularly of large terrestrial115 organisms.

Both CO₂ limitation and a shift in background inorganic ${}^{13}C/{}^{12}C$ could result in more 116 117 enriched values within an organism, but neither was likely in a Lower Devonian world with an 118 atmospheric CO₂ concentration of 8–10 times modern levels (McElwain and Chaloner, 1995) 119 and C isotopic values of 0% to +2% for marine carbonates (Veizer et al., 1999), and neither 120 could explain observed isotopic variation within a single assemblage. Rather, the large C isotopic 121 range measured for Lower Devonian *Prototaxites* strongly suggests that this organism was a 122 heterotroph that lived on isotopically distinct substrates: in this context, a fungus. Given its 123 survival of fluvial transport and deposition (Griffing et al., 2000), Prototaxites, if fungal, was 124 more akin to a robust, perennial bracket fungus than an ephemeral mushroom.

125 Early Devonian Ecosystems

126 The isotopic range of Lower Devonian Prototaxites is difficult to reconcile with 127 consumption of a uniform photosynthetic substrate. Lower Devonian terrestrial faunas were 128 vertebrate free and consisted primarily of arthropod detritivores and predators (Shear and Selden, 129 2001), so trophic enrichment is an unlikely source for variation. Substantial isotopic distinctions 130 between fungi growing on the same substrate could result from digestion of different 131 biochemical components (Hobbie et al., 1999), such as cellulose versus lignin-as in brown and 132 white wood rots. However, most Devonian fungi are small and contained within the host (Taylor 133 et al., 2004) and only white rot is known among the larger fungi capable of extensive 134 translocation (Stubblefield and Taylor, 1988). Furthermore, distinct saprophytic metabolisms are 135 typically employed by different higher-level fungal lineages (Eriksson et al., 1990), not different 136 individuals of the same population. Even if distinct metabolisms were assumed for *Prototaxites*

137	individuals, 4‰–8‰ would be the maximum expected isotopic range for degradation of distinct				
138	plant components (Benner et al., 1987), not the 11‰ seen among Gaspé specimens.				
139	Depleted <i>Prototaxites</i> isotopic values are consistent with consumption of C ₃ land plants,				
140	but enriched Early Devonian specimens require consumption of autotrophs with a carbon-				
141	concentrating mechanism. All CAM and C4 plants appeared long after the Devonian. Terrestrial				
142	lichens have intermediate C isotope discrimination, whether with chlorophyte or cyanobacterial				
143	symbionts, and are not consistent with enriched Prototaxites values (Jahren et al., 2003; Fletcher				
144	et al., 2004). Most bryophytes are even more depleted than C ₃ tracheophytes (Jahren et al., 2003;				
145	Fletcher et al., 2004), but the enriched Prototaxites values can be approached by some hornworts				
146	when water saturated due to a pyrenoid-based carbon-concentration mechanism (Smith and				
147	Griffiths, 1996). Hornworts are unknown before the Cretaceous, but stem-group embryophytes in				
148	general extend back at least to the Ordovician (Gray, 1993; Edwards et al., 1995; Wellman et al.,				
149	2003).				
150	Enriched Prototaxites isotopic values are broadly consistent with consumption of				
151	cyanobacteria-dominated microbial soil crusts (Evans and Belnap, 1999). Moreover, mats can be				
152	prolific sources of sugars, a preferred substrate for fungal growth that tends to have ¹³ C enriched				
153	relative to total biomass (van der Meer et al., 2003). Today, microbial crusts and bryophytes				
154	dominate only where vascular plants are excluded (Campbell, 1979; Evans and Belnap, 1999),				
155	but they were likely distributed broadly prior to vascular plant evolution (Horodyski and Knauth,				
156	1994; Tomescu and Rothwell, 2006). These alternative sources of primary production are rarely				
157	considered for ecosystems that postdate the Silurian appearance of vascular plants, except for				
158	some mention of intercalation among vascular plant dominants and debate over how rapidly				

159 vascular plants spread from wet lowland environments (Griffing et al., 2000; Edwards and

160	Richardson, 2004). Sedimentology may constrain this transition (Retallack, 1985; Love and				
161	Williams, 2000), but the overall narrative is driven by a megafossil record dominated by vascular				
162	plants, rather than any positive evidence for displacement of other primary producers. Given				
163	prodigious nutrient translocation in fungal mycelia (Boswell et al., 2002), consumption of a				
164	substrate consisting of soil crusts intercalated between vascular plants would result in a				
165	Prototaxites of an averaged intermediate isotopic composition, as would an ephemeral				
166	cyanobacterial scum before vascular plants are reestablished after disturbance. Instead, enriched				
167	Prototaxites values suggest a strict absence of C ₃ photosynthesis in persistent, spatially				
168	contiguous landscape patches (perhaps quite large given the potential of modern colonies; Smith				
169	et al., 1992). One-third of our upper-Lower Devonian Prototaxites specimens provide an isotopic				
170	record of heterotrophic growth on a nonvascular, non-C ₃ substrate, 30–40 m.y. after the Silurian				
171	appearance of vascular plants, sampling communities that otherwise would have little chance of				
172	fossil preservation. Isotopic analysis of terrestrial arthropods may provide independent evidence				
173	for varied sources of Devonian primary production and, together with further sampling of				
174	Prototaxites, may reveal changing patterns of substrate use through time.				
175	ACKNOWLEDGMENTS				
176	C. Hadidiocos, J. Wingerath, and S. Wirick provided technical assistance; D.				
177	Edwards provided helpful comments on the manuscript. Research was supported through a				

- 178 National Research Council Associateship, the National Aeronautics and Space
- 179 Administration Astrobiology Institute, and the American Chemical Society Petroleum
- 180 Research Fund.

181 **REFERENCES CITED**

- Abbott, G.D., Ewbank, G., Edwards, D., and Wang, G.Y., 1998, Molecular characterization of
- 183 some enigmatic Lower Devonian fossils: Geochimica et Cosmochimica Acta, v. 62,
- 184 p. 1407–1418, doi: 10.1016/S0016–7037(98)00078–7.
- 185 Beerling, D.J., Lake, J.A., Berner, R.A., Hickey, L.J., Taylor, D.W., and Royer, D.L., 2002,
- 186 Carbon isotopic evidence implying high O₂/CO₂ ratios in the Permo-Carboniferous
- 187 atmosphere: Geochimica et Cosmochimica Acta, v. 66, p. 3757–3767.
- 188 Benner, R., Fogel, M.L., Sprague, E.K., and Hodson, R.E., 1987, Depletion of ¹³C in lignin and
- 189 its implications for stable carbon isotope studies: Nature, v. 329, p. 708–710, doi:
- 190 10.1038/329708a0.
- 191 Boswell, G.P., Jacobs, H., Davidson, F.A., Gadd, G.M., and Ritz, K., 2002, Functional
- 192 consequences of nutrient translocation in Mycelial Fungi: Journal of Theoretical Biology,
- 193 v. 217, p. 459–477, doi: 10.1006/jtbi.2002.3048.
- Boyce, C.K., Cody, G.D., Fesser, M., Jacobsen, C., Knoll, A.H., and Wirick, S., 2002, Organic
- 195 chemical differentiation within fossil plant cell walls detected with X-ray
- 196 spectromicroscopy: Geology, v. 30, p. 1039–1042, doi: 10.1130/0091–
- 197 7613(2002)030<1039:OCDWFP>2.0.CO;2.
- 198 Boyce, C.K., Cody, G.D., Fogel, M.L., Hazen, R.M., Alexander, C.M.O.D., and Knoll, A.H.,
- 199 2003, Chemical evidence for cell wall lignification and the evolution of tracheids in Early
- 200 Devonian plants: International Journal of Plant Sciences, v. 164, p. 691–702, doi:
- 201 10.1086/377113.
- 202 Campbell, S.E., 1979, Soil stabilization by a prokaryotic desert crust: Implications for
- 203 Precambrian land biota: Origins of Life, v. 9, p. 335–348, doi: 10.1007/BF00926826.

- 204 Carruthers, W., 1872, On the history, histological structure, and affinities of Nematophycus
- 205 *logani* Carr (*Prototaxites logani* Dawson), an alga of Devonian age: Monthly Microscopical
- 206 Journal, v. 8, p. 160–172.
- 207 Church, A.H., 1919, Thallasiophyta and the subaerial transmigration: Oxford, Oxford University

208 Press. [[**Q: pages?**]]

- 209 Dawson, J.W., 1859, On the fossil plants from the Devonian rocks of Canada: Geological
- 210 Society [London] Journal, v. 15, p. 477–488.
- 211 Edwards, D., and Richardson, J.B., 2000, Progress in reconstructing vegetation on the Old Red
- 212 Sandstone Continent: Two Emphanisporites producers from the Lochkovian sequence of the
- 213 Welsh Borderland, *in* Friend, P.F., and Williams, B.P.J., eds., New perspectives on the Old
- 214 Red Sandstone: Geological Society [London] Special Publication 180, p. 355–370.
- 215 Edwards, D., and Richardson, J.B., 2004, Silurian and Lower Devonian plant assemblages from
- the Anglo-Welsh Basin: A palaeobotanical and palynological synthesis: Geological Journal,
- 217 v. 39, p. 375–402, doi: 10.1002/gj.997.
- Edwards, D., Duckett, J.G., and Richardson, J.B., 1995, Hepatic characters in the earliest land
 plants: Nature, v. 374, p. 635–636, doi: 10.1038/374635a0.
- Eriksson, K.-E., Blanchette, R.A., and Ander, P., 1990, Microbial and enzymatic degradation of
 wood and wood components: New York, Springer-Verlag, 407 p.
- Evans, R.D., and Belnap, J., 1999, Long-term consequences of disturbance on nitrogen dynamics
 in an arid ecosystem: Ecology, v. 80, p. 150–160, doi: 10.2307/176986.
- Fletcher, B.J., Beerling, D.J., and Chaloner, W.G., 2004, Stable carbon isotopes and the
- 225 metabolism of the terrestrial Devonian organism Spongiophyton: Geobiology, v. 2, p. 107–
- 226 119, doi: 10.1111/j.1472–4677.2004.00026.x.

227 Gray, J., 1993, Major Paleozoic land plant evolutionary bio-events: Palaeogeography,

- Palaeoclimatology, Palaeoecology, v. 104, p. 153–169, doi: 10.1016/0031–0182(93)90127–
 5.
- 230 Griffing, D.H., Bridge, J.S., and Hotton, C.L., 2000, Coastal-fluvial palaeoenvironments and
- 231 plant palaeoecology of the Lower Devonian (Emsian), Gaspé Bay, Québec, Canada, in
- 232 Friend, P.F., and Williams, B.P.J., eds., New perspectives on the Old Red Sandstone:
- 233 Geological Society [London] Special Publication 180, p. 61–84.
- Hatcher, P.G., and Clifford, D.J., 1997, The organic geochemistry of coal: From plant materials
- 235 to coal: Organic Geochemistry, v. 27, p. 251–274, doi: 10.1016/S0146–6380(97)00051-X.
- 236 Hobbie, E.A., Macko, S.A., and Shugart, H.H., 1999, Insights into nitrogen and carbon dynamics
- of ectomycorrhizal and saprotrophic fungi from isotopic evidence: Oecologia, v. 118,
- 238 p. 353–360, doi: 10.1007/s004420050736.
- Horodyski, R.J., and Knauth, L.P., 1994, Life on land in the Precambrian: Science, v. 263,
- 240 p. 494–498, doi: 10.1126/science.263.5146.494.
- 241 Hotton, C.L., Hueber, F.M., Griffing, D.H., and Bridge, J.S., 2001, Early terrestrial plant
- environments: An example from the Emsian of Gaspé, Canada, in Gensel, P.G., and
- Edwards, D., eds., Plants invade the land: Evolutionary and environmental perspectives:
- 244 New York, Columbia University Press, p. 179–212.
- 245 Hueber, F.M., 2001, Rotted wood-alga-fungus: The history and life of *Prototaxites* Dawson
- 246 1859: Review of Palaeobotany and Palynology, v. 116, p. 123–158, doi: 10.1016/S0034–
- 247 6667(01)00058–6.

- 248 Jahren, A.H., Porter, S., and Kuglitsch, J.J., 2003, Lichen metabolism identified in Early
- 249 Devonian terrestrial ecosystems: Geology, v. 31, p. 99–102, doi: 10.1130/0091–

250 7613(2003)031<0099:LMIIED>2.0.CO;2.

Jonker, F.P., 1979, *Prototaxites* in the Lower Devonian: Palaeontographica Abteilung B, v. 171,

252 p. 39–56.

- Love, S.E., and Williams, B.P.J., 2000, Sedimentology, cyclicity and floodplain architecture in
- the Lower Old Red Sandstone of SW Wales, *in* Friend, P.F., and Williams, B.P.J., eds., New
- 255 perspectives on the Old Red Sandstone: Geological Society [London] Special Publication
- 256 180, p. 371–388.
- 257 McElwain, J.C., and Chaloner, W.G., 1995, Stomatal density and index of fossil plants track
- atmospheric carbon dioxide in the Paleozoic: Annals of Botany, v. 76, p. 389–395, doi:
 10.1006/anbo.1995.1112.
- 260 Niklas, K.J., 1976, Chemotaxonomy of Prototaxites and evidence for possible terrestrial
- adaptation: Review of Palaeobotany and Palynology, v. 22, p. 1–17, doi: 10.1016/0034–
 6667(76)90008–7.
- 263 O'Leary, M.H., 1988, Carbon isotopes in photosynthesis: Bioscience, v. 38, p. 328–336.
- 264 Raven, J.A., Johnston, A.M., Kübler, J.E., Korb, R., McInroy, S.G., Handley, L.L., Scrimgeour,
- 265 C.M., Walker, D.I., Beardall, J., Vanderklift, M., Fredriksen, S., and Dunton, K.H., 2002,
- 266 Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and
- seagrasses: Functional Plant Biology, v. 29, p. 355–378, doi: 10.1071/PP01201.
- 268 Retallack, G.J., 1985, Fossil soils as grounds for interpreting the advent of large plants and
- animals on land: Royal Society of London Philosophical Transactions, ser. B, Biological
- 270 Sciences, v. 309, p. 105–142.

271	Selosse, M.A., 2002, Prototaxites: A 400 Myr old giant fossil, a saprophytic holobasidiomycete,				
272	or a lichen?: Mycological Research, v. 106, p. 641-644, doi: 10.1017/S0953756202226313.				
273	Shear, W.A., and Selden, P.A., 2001, Rustling in the undergrowth: Animals in early terrestrial				
274	ecosystems, in Gensel, P.G., and Edwards, D., eds., Plants invade the land: Evolutionary and				
275	environmental perspectives: New York, Columbia University Press, p. 29-51.				
276	Smith, E.C., and Griffiths, H., 1996, A pyrenoid-based carbon-concentrating mechanism is				
277	present in terrestrial bryophytes of the class Anthocerotae: Planta, v. 200, p. 203-212.				
278	Smith, M.L., Bruhn, J.N., and Anderson, J.B., 1992, The fungus Armillaria bulbosa is among the				
279	largest and oldest living organisms: Nature, v. 356, p. 428-431, doi: 10.1038/356428a0.				
280	Stubblefield, S.P., and Taylor, T.N., 1988, Recent advances in palaeomycology: New				
281	Phytologist, v. 108, p. 3–25, doi: 10.1111/j.1469–8137.1988.tb00200.x.				
282	Taylor, T.N., Klavins, S.D., Krings, M., Taylor, E.L., Kerp, H., and Hass, H., 2004, Fungi from				
283	the Rhynie Chert: A view from the dark side: Transactions in Earth Sciences, v. 94, p. 457-				
284	473.				
285	Tomescu, A.M.F., and Rothwell, G.W., 2006, Wetlands before tracheophytes: Thalloid terrestrial				
286	communities of the Early Silurian Passage Creek biota (Virginia), in Greb, S.F., and				
287	DiMichele, W.A., eds., Wetlands through time: Geological Society of America Special				
288	Publication 299, p. 41–56.				
289	van der Meer, M.T.J., Schouten, S., Sinninghe Damisté, J.S., de Leeuw, J.W., and Ward, D.M.,				
290	2003, Compound-specific isotopic fractionation patterns suggest different carbon				
291	metabolisms among Chloroflexus-like bacteria in hot-spring microbial mats: Applied and				
292	Environmental Microbiology, v. 69, p. 6000-6006, doi: 10.1128/AEM.69.10.6000-				
293	6006.2003.				

- 294 Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A.,
- Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., and Strauss, H.,
- 296 1999, 87 Sr/ 86 Sr, δ^{13} C and δ^{18} O evolution of Phanerozoic seawater: Chemical Geology,
- 297 v. 161, p. 59–88, doi: 10.1016/S0009–2541(99)00081–9.
- 298 Wellman, C.H., Osterloff, P.L., and Mohiuddin, U., 2003, Fragments of the earliest land plants:
- 299 Nature, v. 425, p. 282–285, doi: 10.1038/nature01884.

300 FIGURE CAPTIONS

- 301 Figure 1. A: Lower Devonian Prototaxites fossil in situ, Bordeaux Quarry, Quebec. B: Optical
- 302 image of carbon abundance of *Prototaxites* anatomy in cross section. Scale bar = $20 \mu m$. C:
- 303 Electron probe map of carbon abundance of *Prototaxites* anatomy in cross section. Scale bar =
- 304 20 μm. In electron probe map, red indicates high and blue-black indicates slow abundance of
- 305 carbon, qualitatively demonstrating confinement of organic matter to tube walls. **[[Q: In figure**
- 306 A, person in photo could be sitting or standing, so scale really should be more specific;
- 307 would be helpful if specific area of fossil was indicated or outlined]]

308

- 309 Figure 2. Carbon isotopic values for *Prototaxites* and associated vascular plants *Callixylon* and
- 310 Psilophyton and coal. Upper Devonian fossils are from Kettle Point, Ontario (Frasnian-lower
- 311 Fammenian). Lower Devonian (primarily Emsian) fossils are from south shore of Gaspé
- 312 Peninsula, Quebec (diamonds), north shore of Gaspé Peninsula (squares), Baxter State Park,
- 313 Maine (Xs), and Pin Sec Point, New Brunswick (triangles). Each symbol represents average of
- two samples from single specimen. Based on acetanilide standards, analytical error associated
- 315 with each measurement is $\pm 0.2\%$. Details in Table DR1 (see footnote 1).
- 316

317	Figure 3. Stacked gas chromatography–mass spectrometry (GC-MS) chromatograms of				
318	pyrolysate (plotted as total ion count vs. retention time) of Lower Devonian Gaspé and Upper				
319	Devonian Kettle Point samples. Identities of various molecular groups are highlighted and				
320	references cited in legend. Labeled contaminants are polydimethyl siloxane products resulting				
321	from reaction of HCl released from pyrolyzed minerals with various internal septa of GC-MS;				
322	they could not have contributed to isotopic measurements because they are not present in original				
323	samples. [[Q: There are no references cited "in legend" in figure; should this be				
324	"Identitiesare highlighted and defined in legend"? Or "highlighted and annotated"?				
325	Note that peninsula should be uppercase; should be 1-ems in key; seconds should be s.]]				
326					
327	¹ GSA Data Repository item 2007xxx, Figure DR1 and Table DR1, is available online at				
328	www.geosociety.org/pubs/ft2007.htm, or on request from editing@geosociety.org or Documents				
329	Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. [[Q: any other item to be listed?				
330	(Line 66 mentions "samples and methods"; is there a separate appendix?). Need item				
331	descriptions.]]				

SUPPLEMENTAL FIGURE 1

Supplemental Figure 1. A, Fragment of a permineralized *Prototaxites* trunk displayed at Parc de Miguasha, from the Lower Devonian Bordeaux Quarry, near Cross Point, Quebec, Canada, approximately 1.5 m high. B, Portion of a large permineralized *Prototaxites* trunk in cross section showing the concentric banding of peripheral accretionary growth. White arrow indicates center of the axis. Specimen from Bordeaux Quarry (Parc de Miguasha collection).

METHODS

Samples for isotopic and organic analyses were obtained from permineralized fossils and powdered with mortar and pestle. Powdered samples for isotopic analysis were treated with 5% HCl to eliminate the possibility of carbonate contamination. All tools were cleaned by sonication in hexane for 15 minutes before use, except for the delicate sample boats for isotopic analyses which were sonicated in hexane for 1 minute. Fossils were washed with hexane but not sonicated. The surfaces of fossils and all equipment were rinsed with ethanol and allowed to air dry after the collection of each sample.

Isotopic measurements were made with a Finnigan Delta Plus Excel isotope ratio mass spectrometer with a CE Instruments, NA 2500 series, elemental analyzer and a Conflo II interface. The gas chromatograph oven was set to 60° C for the fossil samples. Acetanilide standards were only included at the beginning of each set of analyses (followed by 2 or 3 blank sample boats) and at the end after all fossil samples had been run in order to eliminate the possibility that trace residue from the carbon-rich acetanilide standards might contaminate fossil samples.

Pyrolysis Gas Chromatography-Mass Spectrometry (GC-MS) was performed with an Agilient 6890 GC interfaced with an Agilent 5972 quadrupole mass spectrometer. Samples were pyrolyzed using a CDS-1000 pyroprobe where 0.5-3 mg samples were heated to 715 °C with a heating rate of 500 °C/sec under helium at the injection port of the GC. Chromatography was performed with a 50 % phenyl polydimethylsiloxane stationary phase column.

Maps of elemental composition in standard fossil thin sections obtained using a JEOL 8900 electron microprobe with five wavelength dispersive spectrometers. Electron probe measurements interact only with the sample surface, are no more than semi-quantitative, and are intended only to illustrate confinement of carbon to the organic tube walls and absence of dispersed carbonate (which would recognizably dwarf organic carbon concentrations if present). Analyses were performed at 15 KeV. Following modifications of standard procedures described previously (Boyce et al. 2001), samples were aluminum coated and an increased electron beam current of approximately 300 nA was employed in order to enhance detection of organic carbon.

Reference cited:

Boyce, C.K., Hazen, R.M., and Knoll, A.H., 2001, Nondestructive, in situ, cellular-scale mapping of elemental abundances including organic carbon in permineralized fossils: Proceedings of the National Academy of Sciences, v. 98, p. 5970-5974.

11101				1
Age*	Locality [†]	Specimen [§]	Curation [#]	$\delta^{13}C$
				(‰)
Frasnian/	Kettle Point (ON)	Prototaxites southworthii	HBM 55852	-28.99
Famennian				-28.83
Frasnian/	Kettle Point (ON)	Prototaxites southworthii	USNM 510202	-27.87
Famennian				-26.49
Frasnian/	Kettle Point (ON)	Callixylon newberryi	USNM (unnumbered)	-27.79
Famennian			Southworth collection	-27.68
Frasnian/	Kettle Point (ON)	Callixylon newberryi ^{**}	USNM (unnumbered)	-27.51
Famennian			Southworth collection	-27.27
L.Emsian/	Baxter State Park	Prototaxites sp.	USNM (unnumbered)	-26.56
E.Eifelian	(ME)		Hueber collection	-26.56
L.Emsian/	Baxter State Park	Prototaxites sp.	USNM (unnumbered)	-27.82
E.Eifelian	(ME)		Hueber collection	-27.07
Emsian	Pin Sec Point (NB)	Prototaxites loganii	USNM 510099	-15.69
		-		-15.83
Emsian	Pin Sec Point (NB)	Coal	USNM (unnumbered)	-23.23
		(of cf. Sawdonia)	Hueber locality 91-10	-23.84
M./L.Emsian	Gaspé peninsula,	Prototaxites loganii	USNM (unnumbered)	-28.75
	North Shore (QC)		Hueber collection	-28.10
M./L.Emsian	Gaspé peninsula,	Prototaxites loganii	USNM (unnumbered)	-28.61
	North Shore (QC)		Hueber collection	-28.76
M./L.Emsian	Gaspé peninsula,	Prototaxites loganii	USNM (unnumbered)	-26.59
	North Shore (QC)		GSC locality ^{††} 5388	-26.59
M./L.Emsian	Gaspé peninsula,	Prototaxites loganii	USNM (unnumbered)	-26.60
	South Shore (QC)		Hueber locality 66-8	-26.62
M./L.Emsian	Gaspé peninsula,	Prototaxites loganii	USNM 510202	-18.88
	South Shore (QC)	-		-19.07
M./L.Emsian	Gaspé peninsula,	Prototaxites loganii	USNM (unnumbered)	-15.64
	South Shore (QC)		SUNYB ^{††} 1146.C-1.1	-15.68
M./L.Emsian	Gaspé peninsula,	Psilophyton princeps	USNM (unnumbered)	-24.57
	South Shore (QC)		Hueber locality 66-8	-22.58
L.Pragian/	Gaspé peninsula,	Coal	USNM (unnumbered)	-24.32
E.Emsian	South Shore (QC)	(of cuticularized axes)	Hueber locality 66-6	-24.23

TABLE 1. SAMPLES AND CARBON ISOTOPIC COMPOSITION

*E-Early, M-Middle, L-Late.

†ME-Maine, United States; NB-New Brunswick, ON-Ontario, QC-Quebec, Canada.

§All specimens silica permineralized (including Pin Sec Point coal) except for the unmineralized Gaspé coal and the Gaspé *Psilophyton*, which is permineralized in carbonate.

#All specimens loaned from USNM-Smithsonian National Museum of Natural History or HBM-Harvard Botanical Museum.

**Wood specimen with some fungal decay.

††GSC-Geological Society of Canada; SUNYB-State University of New York, Binghamton.