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Thermodynamics of cation ordering in karrooite (MgTi2O5)
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INTRODUCTION

In this paper we develop a thermodynamic model that de-
scribes cation ordering as a function of temperature and pres-
sure in the karrooite (MgTi2O5) end-member of the armacolite
solid-solution series. The model is constructed utilizing tech-
niques first developed by Thompson (1969, 1970) to describe
cation order-disorder phenomena in minerals in terms of the
principle of homogeneous equilibrium. The present study was
prompted by the recent completion (Yang and Hazen 1998) of
high quality, one-atmosphere X-ray structure refinements of
single crystals of synthetic karrooite, which were equilibrated
prior to analysis at temperatures over the range 600–1400 °C.
The results of the study of Yang and Hazen (1998) are at odds
with previous estimates of the equilibrium ordering state of
karrooite (especially at elevated temperatures) and, conse-
quently, existing formulations of the thermodynamics of cat-
ion ordering in this phase (Brown and Navrotsky 1989) require
reevaluation in light of the recent results. We take this oppor-
tunity to develop a thermodynamic model that accounts for
the Yang and Hazen (1998) measurements, and incorporate into
the formulation a pressure dependence of this cation-ordering
phenomena by accounting for the effect of ordering on the com-
pressibility estimates of Hazen and Yang (1997).

THERMODYNAMIC  ANALYSIS

A description of the karrooite structure and its relationship
to other pseudobrookite-type oxide solid solutions is summa-
rized by Waychunas (1991). For the present purpose, it is suf-
ficient to understand that the Mg2+ and Ti4+ cations are
distributed over two types of octahedral sites, M1 and M2,
which are present in the ratio 1:2, respectively. The cation or-
dering, which is consequently of non-convergent type, there-
fore can be quantified by inventorying the proportion of Mg2+

or Ti4+ occupying either site. We may define an ordering pa-
rameter, s, to accomplish this task:

s X X= Mg
M1

Mg
M2– 2 (1)
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where XMg
M1  denotes the mole fraction of Mg2+ on the M1 octa-

hedral site and XMg
M2  denotes the mole fraction of Mg2+ on the

M2 octahedral site. The experimental evidence demonstrates
that s is a function of both temperature and pressure. Note that
the order parameter defined in Equation 1 is different from
that adopted by Brown and Navrotsky (1989) or by Yang and
Hazen (1998). Our choice is motivated by a desire to simplify
the thermodynamic treatment by generating an order param-
eter that assumes values over the range 1 to –1 in proceeding
from the fully ordered (XMg

M1  = 1, XMg
M2  = 0; s = 1) to the fully

antiordered (XMg
M1  = 0, XMg

M2  =1/2; s = –1) state. The algebraic
simplification with this definition is considerable. It should also
be noted that a random cation configuration is given by XMg

M1  =
XMg

M2  = 1/3; s = –1/3. From Equation 1 it follows that:

X
s

Mg
M1 =

+1
2

(2a)

X
s

Mg
M2 =

1
4
–

(2b)

X
s

Ti
M1 =

1
2
–

(2c)

and

X
s

Ti
M2 =

+3
4

. (2d)

The configurational entropy (S– conf) associated with the de-
gree of cation order is:

S R X X X X X X X Xconf
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M1
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M1
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M2
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M2
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M2

Ti
M2= + + +( )– ln ln ln ln2 2    (3)

which, via Equations 2a–d may be written as a function solely
of the order parameter, s:
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We construct a thermodynamic model for karrooite order-
ing by writing an expression for the molar Gibbs free energy
(G

–
) of the phase in terms of configurational (–TS

–
conf) and lat-

tice vibrational (G
–*
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G
–
 = –TS

–
conf + G

–* (5)

taking the vibrational component to be a second-order trun-
cated Taylor expansion in the order parameter:

G
–* = G

–*
0 + G

–*
ss + G

–*
s2s2. (6)

The Taylor coefficients in Equation 6, G
–*

0, G
–*

s, and G
–*

s2, are
conveniently recast in terms of more intuitive energetic quanti-
ties. Adopting G

–
0
Kar to denote the molar Gibbs free energy of

fully ordered karrooite (MgM1Ti2
M2O5) at any T and P, along with

∆G
–

0
EX to describe the free energy change of the ordering reac-

tion:

MgM1Ti2
M2O5 = TiM1(Mg,Ti)2

M2O5 (7)

and WG to refer to a “regular solution type” parameter defining
the non-linearity of the Gibbs energy along the MgM1Ti2

M2O5-
TiM1(Mg,Ti)2

M2O5 join, Equation 6 may be transformed into

G G G s W sG

*
– –= + ( ) + ( )Kar

0
EX
01

2
1

1
4

1 2∆ . (8)

Equations 4, 5, and 8 define our thermodynamic model. In
general, the model parameters ∆G

–
0
EX and WG may be functions

of both temperature and pressure. First-order expansions in
both T and P are adopted for preliminary analysis of the ex-
perimental data sets:

∆G
–

0
EX = ∆H

–
0
EX – T∆S

–
0
EX + ∆V

–
0
EX (P–1), (9)

WG = WH – TWS + WV(P–1). (10)

Experimental measurements of ordering state in karrooite
as a function of T and P provide a means of calibrating s(T,P)
under the assumption that the measurements reflect an “equi-
librium” state of cation order. In thermodynamic equilibrium,
the molar Gibbs free energy is minimal with variation in s at
fixed T and P:

∂
∂

=G

s
0 (11)

which from Equations 4, 5, 8, 9, and 10, results in:

R ln
–
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T
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. (12)

The model parameters in Equation 12, e.g., ∆H
–

0
EX, ∆S

–
0
EX, ∆V

–
0
EX,

WH, WS, and WV, must be calibrated from experimental data.
In Figure 1 we plot values of

RT 1n  –
s s

s
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1
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as a function of s, derived from the measurements of Yang and
Hazen (1998). The data point labeled 600° C is problematic. The
karrooite samples Yang and Hazen (1998) utilized for their analy-
sis were prepared from synthetic oxides at high temperatures (1200
°C). Single crystals were then selected and annealed at the tem-
peratures indicated in Figure 1. In the case of the 600 °C sample,
an annealing time of 1008 hours was probably insufficient; re-
peated analysis of crystals “equilibrated” at this temperature
demonstrated inconsistent values of lattice constants. For this
reason, in the subsequent calibration of our model from these
data we will utilize the 600 °C measurement for reference and
not constrain the model to fit this datum.

As the Yang and Hazen (1998) data were collected at a pres-
sure of 1 bar, the array of points should be modeled according
to (e.g., Eq. 12):

R EX
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0

T
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 = + [ ]∆ ∆ (12')

Extensive studies of numerous oxide (Ghiorso 1990a; Sack and
Ghiorso 1991a, 1991b) and silicate (Ghiorso et al. 1995;
Hirschmann and Ghiorso 1994; Sack and Ghiorso 1989, 1994a,
1994b, 1994c, 1998) mineral solid solutions have demonstrated
that excess vibrational entropies (i.e., non-zero values of ∆S

–
0
EX

or WS) are never required to model cation order-disorder phe-
nomena unless there is a strong disparity in the effect of tem-
perature on the coordination number or geometry of one site
over the other (e.g., pigeonite → high Ca-pyroxene, Sack and
Ghiorso 1994b). Such is the case in karrooite (Brown and
Navrotsky 1989; Yang and Hazen 1998), and the consequences
can be seen in the intrinsic curvature of the array of points plot-
ted in Figure 1. Even if the 1400 °C point is removed from
consideration, on the argument that the highest temperature
equilibrium ordering state may be unquenchable, the curvature
is still apparent and outside the 2σ uncertainty of the three points
at 1000, 800, and 700 °C. In the context of our model expres-
sion (Eq. 12'), this curvature can be accounted for by varying
either the slope of the curve as a function of T (non-zero WS) or
the intercept (non-zero ∆S

–
0
EX) or both. Least-squares analysis

of these three possibilities, utilizing maximal F-value as an
optimality criteria (Daniel and Wood 1980), indicates a param-
eterization with ∆S

–
0
EX set to zero is the best choice. The result-

ing values for ∆H
–

0
EX, WH, and WS are provided in Table 1. The

model curve is plotted in Figure 1.
In Figure 2, we plot s as a function of T showing our model

prediction and indicating the measurements of Yang and Hazen
(1998) and the inferences of Brown and Navrotsky (1989).
Ordering state estimates derived from the latter study were not
obtained from single crystal structure refinements and conse-
quently are not to be regarded with the same weight as the data

FIGURE 1. Analysis of Cation-ordering data for Karrooite according
to Equation 12 (see text). Measurements of Yang and Hazen (1998)
are plotted with 2σ uncertainties and are labeled with the temperature
(°C) of annealing. s is given by Equation 1. The solid curve is the
model representation of the data.
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of Yang and Hazen (1998). The greatest disparity between the
two sets of measurements arises at elevated temperature and
most likely reflects difficulties associated with quenching of
samples.

Having established a model for the variation of the order
parameter with temperature at 1 bar pressure, we next turn to
measurements of molar volume and compressibility in order to
calibrate the remaining model parameters. From the definition
of the total derivative of G

–
:

dG
G

s
s

G

T
T

G

P
P= + +∂

∂
∂
∂

∂
∂

d d d (13)

we obtain a general expression for V
–
 (

d
d
G

P
 at constant T),

V
G

s

s

P

G

P
= +∂

∂
∂
∂

d
d

(14)

which for the special case of equilibrium cation order (         = 0),
simplifies to:

V
G

P
= ∂

∂
. (15)

Differentiating our model expression for G
–

according to
Equation 15 yields:

V V V s W sV= + ( ) + ( )Kar
0

EX
01

2
1

1
4

1 2∆ – – . (16)

The compressibility (β) is the inverse of the bulk modulus
(K) and is defined in terms of the isothermal pressure deriva-
tive of the volume:

β ∂
∂

= –
1

V

V

P
. (17)

To obtain a model expression for the compressibility, we
take the derivative of Equation 14 with respect to pressure at
constant temperature:
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d
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d

2

2

2

2

2 2 2

22 . (18)

The first term on the right hand side of Equation 18 van-
ishes in the special case of equilibrium cation order, but the
next two terms do not! They represent the change of volume
with respect to pressure induced changes in the ordering state.
The partial derivatives of G

–
are easily evaluated from our model

expression:

∂
∂

2

2

5 3

1 1 3
1
2

G

s

T s

s s s
WG=

+( )
+( )( ) +( )

R

–
– (19)

∂
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2 1
2

G ∆V W sEX V
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1
2
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and

∂
∂P

2G = –2

∂
∂P

V 0
Kar

. (21)

The variation of the order parameter with pressure in an
equilibrium state of cation order can be obtained utilizing the

method of Ghiorso (1990b). As 
∂
∂s

G
 = 0 in a state of equilib-

rium order, the total derivative of 
∂
∂s

G
 must also be zero:

d d d d
∂
∂

∂
∂

∂
∂ ∂

∂
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= = + +0
2

2
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(22)

from which at constant temperature:

d
d

s

P

G

s P

G

s
= –

∂
∂ ∂

∂
∂

2 2

2
. (23)

Substituting the definition in Equation 23 into Equation 18,
gives the pressure dependence of the volume in an equilibrium
state of cation order:

∂
∂

∂
∂

∂
∂
V

P

G

s

G

P∂ ∂s P







+
22∂ G2

2 2

2

= – . (24)

Substitution of Equations 19, 20, and 21 relates this expres-
sion back to our adopted model parameters.

In Figure 3 we plot measured molar volumes of karrooite
from Yang and Hazen (1998) as a function of ordering state (a)
and temperature (b). In addition to these data, isothermal bulk
moduli for this phase are plotted in Figure 4 as a function of
temperature. These estimates are from the analysis of Hazen
and Yang (1997) and are based on diamond-anvil cell experi-

TABLE  1. Suggested model parameters

Model parameter Value
∆H– 0

EX 17.0177 (kJ)
∆S– 0

EX 0
∆V– 0

EX 0
WH 59.3557 (kJ)
WS 41.0611 (J/K)
WV 0.0734607 (J/bar)
V–0

Kar,0 5.46085 (J/bar)
V–0

Kar,T 8.25432 10–6 (J/bar-K)
V–0

Kar,P –3.10675 10–6 (J/bar2)
V–0

Kar,T, P –2.0 10–10 (J/bar-K2)
Note: V–0

Kar = V
–0

Kar,0 + V
–0

Kar,T T + V–0
Kar,P(P–1) + V–0

Kar,T, P(P–1)

FIGURE  2. Ordering parameter (s) plotted as a function of
temperature (T) for Karrooite. Heavy vertical black lines represent data
of Yang and Hazen (1998) with two sigma uncertainties in s. Data plotted
as thin solid and dashed vertical lines represent inferences of ordering
state calculated by Brown and Navrotsky (1989) from high-temperature
lattice parameter data. The solid curve is the model representation of the
data at 1 bar pressure. Dashed curves are model isobars at pressures of
2, 4, 6, and 8 GPa (only the 8 GPa curve is labeled).

d
d
G

s
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DISCUSSION

The volume change associated with disordering the cation
distribution in karrooite is given by V

–
 – V

–
(s→1) :

∆ ∆V V s W sv

dis
EX= ( ) + ( )1

2
1

1
4

1
0 2– – . (25)

Substitution of parameter values from Table 1 demonstrates
that the right-hand side of Equation 25 is always positive,
thereby implying that the Gibbs free energy of the disordered
structure is always more positive than the ordered structure at
a given temperature as pressure is increased. Consequently,
there is a thermodynamic driving force for karrooite to become
more ordered as pressure is increased at constant temperature.
This effect can be quantified by calculating the variation in
ordering state as a function of temperature at various pressures.
Curves depicting this variation at a total pressure of 2, 4, 6, and
8 GPa are plotted in Figure 2. One interesting aspect to these
calculations is that the effect of P on s appears to be maxi-
mized at intermediate temperatures. The maximum response
corresponds to the point of inflection in the 1 bar T-s curve of
Figure 2. We examine this aspect of the dependence of s on P
in more detail in Figure 5. Here the derivative,

d
d R

EX
0

s

P

V W s

T s

s s s
W TW P W

V

H S V

=
+

+( )
+( )( ) +( ) + ( )[ ]

1
2

1
2

5 3

1 1 3
1
2

1

∆

–
– – –

(26)

(see above) is evaluated at a pressure of 1 bar and is plotted as
a function of temperature. The maximum in ds/dP, seen at a
temperature of around 1000 K, confirms the inference drawn
from the spacing of the isobars in Figure 2. The calculation
displayed in Figure 5 also illustrates a general feature about
the thermodynamic response to non-convergent cation order-
ing phenomena: maximal temperature-variation in thermody-
namic properties is observed at a temperature that corresponds
to the maximal rate of change in s. This principle is best illus-
trated for karrooite by calculating as a function of temperature
the Gibbs free energy, entropy, enthalpy, and heat capacity of
disorder: ∆G

–
dis, ∆S

–
dis, ∆H

–
dis, and ∆C

–
P
dis respectively. These quan-

tities are defined analogously to Equation 25 and are given by:

∆ ∆G T S G s W sG

dis conf
EX= + ( ) + ( )– – –

1
2

1
1
4

1
0 2 (27)

∆ ∆S S S s W sS

dis conf
EX= + ( ) + ( )1

2
1

1
4

1
0 2– – (28)

∆ ∆H H s W sH

dis
EX
0= ( ) + ( )1

2
1

1
4

1 2– – (29)

and

∆C T
G

s T

G

s
P
dis

=






∂
∂ ∂

∂
∂

2 2 2

2 (30)

where the later follows from an expression for the molar heat
capacity,

C T
G

s T

G

s
T

G

T
P =







∂
∂ ∂

∂
∂

∂
∂

2 2 2

2

2

2– (31)

which may be derived in a fashion identical to Equation 24.
Curves depicting the temperature dependence of ∆G

–
dis, ∆S

–
dis,

FIGURE 3. Volume (V) plotted against ordering parameter (s) in a
and against temperature (T) in b. Data are from Yang and Hazen (1998)
shown with 2σ uncertainties. The solid curves are the model
representations of the data.

FIGURE 4. Bulk modulus (K) plotted against temperature (T).
Estimated values are from Hazen and Yang (1997) shown with 2σ
uncertainties. The solid curve is the model representation of the data.

ments on synthetic single crystals annealed at the indicated
temperatures and quenched to room temperature. Both of these
datasets are fitted to the proposed model simultaneously; for
reasons outlined above, the 600 °C volume determinations were
afforded zero weight. The resulting model curves are plotted
on both figures and the optimal model parameter values are
provided in Table 1.
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plied to the isostructural FeTi2O5 (known as ferro-pseudobrookite)
and, in principle, can be extended to armacolite (Fe2+-Mg) solid
solutions, and more oxidized varieties of pseudobrookites (in
the system MgTi2O5-FeTi2O5-Fe2TiO5) found in some alkalic vol-
canic rocks. What is required to extend the present analysis to
these compositions is data on cation-ordering of a quality com-
parable to that of Yang and Hazen (1998). As demonstrated in
this paper, these data provide all the essential information to de-
fine an equation of state for the phase that includes the important
effects of cation order-disorder.
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FIGURE 6. Calculated variation of the Gibbs free energy (∆G
–

dis),
entropy (∆S

–
dis), enthalpy (∆H

–
dis), and heat capacity (∆C

–
P
dis) of disorder

plotted as a function of temperature (T). The solid curves correspond
to a pressure of 1 bar. The dashed curve show variation in ∆G

–
dis at a

pressure of 8 GPa.

FIGURE 5. The rate of change of ordering parameter (s) with respect
to pressure (P) plotted against temperature (T). The modeled curve
(Eq. 26) displays a maximum at ~700 °C.

∆H
–

dis, and ∆C
–

P
dis at 1 bar and ∆G

–
dis at 8 GPa are plotted in Fig-

ure 6. Note that the maximum in ∆C
–

P
dis of ~55 J/K-mol at ~950

K is roughly 30% of the total heat capacity of karrooite at this
temperature (Berman and Brown 1985). Note also the sympa-
thetic variation of ∆S

–
dis and ∆H

–
dis and how this variation is to a

certain extent, moderated by cancellation in ∆G
–

dis.
The thermodynamic analysis of cation-ordering in karrooite

developed in this paper could be improved if “in situ” high-tem-
perature cation-ordering data were available. The assumption
that the measurements of Yang and Hazen (1998) represent
quenched “equilibrium” states of order needs verification as the
kinetics of ordering may be rapid enough, especially at high-T,
to introduce systematic bias in the calibration. Nevertheless, the
model formulation developed in this paper can be readily ap-


