mation is only valid when the diffusion couple lies along an eigenvalue direction. Consequently, the quality of the pseudobinary approximation cannot be reliably estimated because it is impossible to know a priori the directions of the eigenvectors. A promising alternative to experimental measurement of D_{ik} is the use of molecular dynamics simulations that generalize established methods for calculating binary interdiffusion coefficients (13).

REFERENCES AND NOTES

- 1. T. Graham, Philos, Trans, R. Soc, London 140, 1 (1850); A. Fick, Ann. Phys. (Poggendorf) 94, 59 (1855)
- L. Onsager, *Phys. Rev.* **37**, 405 (1931); *ibid.* **38**, 2265 (1931); _____ and R. M. Fuoss, *J. Phys.* 2265 (1931); _____ and R. M. Fuoss, J. Phys. Chem. 36, 2689 (1932); L. Onsager, Ann. N.Y. Acad. Sci. 46, 241 (1945).
- 3. Diffusion studies in binary systems involve the determination of a single diffusion coefficient that may be a function of temperature, pressure, and composition. In a ternary system, there are four independent chemical diffusion coefficients; in a quaternary system, nine diffusion coefficients; and, in general, $(n - 1)^2$ diffusion coefficients in an *n*-component system. Written as a matrix (D_{ik}) , the off-diagonal terms (for example, D_{12} and D_{21} in a ternary system) are referred to as the crosscoupling terms because they link the flux of one component to the concentration gradient of a different component.
- 4. For example, the thermoelectric effect [W. Thomson, Proc. Roy. Soc. Edinburgh 3, 225 (1854)] and the heat conduction in anisotropic solids [G. Stokes, Camb. Dublin Math J. 6, 215 (1851)].
- Irreversible phenomena as diverse as thermoelectricity, heat conduction in anisotropic materials, thermogalvanomagnetism, isothermal chemical diffusion, and chemical diffusion in a thermal gradient are some notable examples [see S. R. deGroot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984); D. D. Fitts, Nonequilibrium Thermodynamics (McGraw-Hill, New York, 1962); S. Wisniewski, B. Staniszewski, R. Szymanik, Thermodynamics of Nonequibirum Processes (Reidel, Dordrecht, the Netherlands, 1976)]. Experimental data supporting Onsager's approach to these phenomena is summarized in D. G. Miller, Chem. Rev. 60, 15 (1960).
- 6. For aqueous systems, early attempts to verify the ORR are summarized in D. G. Miller, J. Phys. Chem. 63, 570 (1959). More recently, analysis of the quaternary aqueous system KCI-KH2PO4 H₃PO₄ has shown good agreement with the ORR [R. A. Noulty and D. G. Leaist, ibid. 91, 1655 (1987)]. Two useful reviews of metallic alloys are J. S. Kirkaldy, *Adv. Mater. Res.* 4, 55 (1970) and J. S. Kirkaldy and D. J. Young, Diffusion in the Condensed State (Institute of Metals, London, 1987). A more recent verification of the ORR for the Fe-Cr-Al alloy was reported by H. Akuezue and J. Stringer, Metall. Trans. 20A, 2767 (1989). Discussion of organic polymer multicomponent diffusion may be found in a series of papers by W D. Comper and colleagues [including W. D. Comper, G. J. Checkley, B. N. Preston, J. Phys. Chem. 88, 1068 (1984), and W. D. Comper, P. M. MacDonald, B. N. Preston, ibid., p. 6031].
- 7. H. Sugawara, K. Nagata, K. Goto, Metall. Trans. B 8, 605 (1977). Note the apparent typographical error in Eqs. 2 and 3 of this reference. The left-hand side should read J_i/ρ instead of J_i where ρ is the melt density.
- A. K. Varshneya and A. R. Cooper, J. Am. Ceram Soc. 55, 312 (1972); H. Wakabayashi and Y. Oishi, J. Chem. Phys. 68, 2046 (1978).
- R. G. Berman and T. H. Brown, Geochim. Cosmochim. Acta 48, 661 (1984). Uncertainties on the Margules parameters are not provided, but relative errors are most likely in the range 5 to 15%.

- 10. The definition of the diffusive mass flux is decentively simple: $j_i = \rho w_i (v_i - v)$, where ρ is the density, v, is the average velocity of component i, and v is the reference velocity. However, the equation of mass conservation (Eq. 2) and the relation between the fluxes and concentration gradients (Eq. 5) must be written differently, depending on the reference velocity used. A number of reference velocities are in common use, including volume, mass, mole, and solvent average velocities. In this report, v is the mass average (or barycentric) velocity.
- 11. The molar chemical potential for component 1 in a ternary system is given by

 $\tilde{\mu}_1 = \tilde{\mu}^0_1 + RT \ln(x_1) + \tilde{G}^E$

+
$$x_2 \left(\frac{\partial \tilde{G}^E}{\partial x_1}\right)_{x_3} + x_3 \left(\frac{\partial \tilde{G}^E}{\partial x_1}\right)_{x_2}$$

where $\tilde{\mu}^{o}_{1}$ is the reference state chemical potential, R is the gas constant, x is the mole fraction of component i, and \tilde{G}^{E} is the excess Gibbs free energy of the melt. The chemical potential of components 2 and 3 may be found by permutation of the subscripts. The Margules solution model for the excess Gibbs free energy is

 $\tilde{G}^{\mathsf{E}} = \tilde{W}_{1112} x_1^3 x_2 + \tilde{W}_{1122} x_1^2 x_2^2 + \tilde{W}_{1222} x_1 x_2^3$

- $+ \tilde{W}_{1113}x_1^3x_3 + \tilde{W}_{1133}x_1^2x_3^2 + \tilde{W}_{1333}x_1x_3^3$
- $+ \tilde{W}_{2223}x_{2}^{3}x_{3} + \tilde{W}_{2233}x_{2}^{2}x_{3}^{2} + \tilde{W}_{2333}x_{2}x_{3}^{3}$

+ $\tilde{W}_{1123}x_1^2x_2x_3$ + $\tilde{W}_{1223}x_1x_2^2x_3$ + $\tilde{W}_{1233}x_1x_2x_3^2$ The Margules parameters are functions of temperature and follow the relation $\tilde{W} = \tilde{W}_H - T \tilde{W}_S$, where H is enthalpy, S is entropy, and the sub-scripts defining specific component interactions have been dropped for convenience.

- 12. If the matrix G_{ik} is ill-conditioned (for example, $\det(G_{ik}) = G_{12}G_{21} G_{11}G_{22}$ is small) the values of L_{ik} will not be accurately determined by Eq. 14. It is still possible to test the validity of the ORR, however. Equating L_{12} and L_{21} leads to the conclusion that the reciprocal relations are valid if $(D_{11}G_{12}-D_{12}G_{11}+D_{21}G_{22}-D_{22}G_{21})$ equals zero. This type of singularity occurs near critical points and is not a problem for the CaO-Al₂O₃-SiO₂ composition under consideration
- 13. R. L. Rowley, J. M. Stoker, N. F. Giles, Int. J. Thermophys. 12, 501 (1991).
- 14. This research was supported by the U.S. Department of Energy (DE-FG03-91ER-14211) and the National Science Foundation (EAR-92-05820). Insti-

Comparative Compressibilities of Silicate Spinels: Anomalous Behavior of (Mg,Fe),SiO,

Robert M. Hazen

ment of Energy (DE-FG03-91ER-14211) and the National Science Foundation (EAR-92-05820). Insti-tute for Crustal Studies contribution 0137-30CM. 21 August 1992; accepted 2 November 1992 **Iities of Silicate Spinels: r of (Mg,Fe)**₂SiO₄, Ni₂SiO₄, and two ed on crystals positioned in the same high-nultaneously to the same pressure revealed om compositional differences. Ferromagne-13 percent increase in bulk modulus with pigapascals) to Fe₂SiO₄ (207 gigapascals). Desium, which behave similarly under crustal gh pressures characteristic of the transition useful tools to predict properties of oxides, halides, silicates, and many other com-pounds. Such relations for isomorphous iso-electronic series (2), as well as for individual cation coordination polyhedra (3), provide a basis for comparison of bulk moduli and Compressibilities of five silicate spinels, including γ -Mg₂SiO₄, γ -Fe₂SiO₄, Ni₂SiO₄, and two ferromagnesian compositions, were determined on crystals positioned in the same highpressure mount. Subjection of all crystals simultaneously to the same pressure revealed differences in compressibility that resulted from compositional differences. Ferromagnesian silicate spinels showed an anomalous 13 percent increase in bulk modulus with increasing iron content, from Mg_2SiO_4 (184 gigapascals) to Fe_2SiO_4 (207 gigapascals). This result suggests that ferrous iron and magnesium, which behave similarly under crustal conditions, are chemically more distinct at high pressures characteristic of the transition zone and lower mantle.

Knowledge of the compression behavior of oxide and silicate minerals helps to reveal the structure and dynamics of the Earth's deep interior. Furthermore, data on these minerals provide an understanding of the varied effects of pressure on structure and bonding. In this report, I describe anomalous compression behavior in ferromagnesian silicate spinels, which are assumed to be major minerals in the Earth's transition zone.

Most crustal minerals, including magnesium-iron silicates, may be modeled as ionic compounds with bond strengths determined to a first approximation by Coulombic forces. In the 1920s, Bridgman first demonstrated empirical inverse correlations between bulk modulus and molar volume and rationalized his results on an electrostatic model (1). Relations between bulk modulus and volume have subsequently developed into cation coordination polyhedra (3), provide a basis for comparison of bulk moduli and individual bond compressibilities throughout a wide range of condensed materials.

The high-pressure behavior of minerals with Mg-Fe²⁺ solid solution has been studied intensively because of the importance of these minerals in models of the Earth. Polymorphs of (Mg,Fe)SiO₃ and (Mg,Fe)₂SiO₄ are of particular concern because the major element bulk composition of the mantle is believed to fall somewhere between those stoichiometries. A key issue in geophysics and mineral physics has been the nature of the seismic discontinuity at 670 km, which marks the boundary between the transition zone and lower mantle. Both (Mg,Fe)SiO₃ silicate perovskite and (Mg,Fe)O are believed to exist below this boundary, whereas $(Mg,Fe)_2SiO_4$ silicate spinel occurs above

206

Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, Washington, DC 20015-1305.

the discontinuity (4). To resolve details of the mineralogy and composition of this region, it is necessary to obtain accurate equations of state of the relevant phases. In particular, an understanding of the effect of the Fe/(Fe+Mg) ratio on mineral properties is essential to determine whether the 670km feature reflects only a phase change or also compositional boundary (5, 6).

In most ferromagnesian minerals, the

Mg-Fe²⁺ substitution has little effect on compressibility (Table 1). Ferrous iron (ionic radius 0.78 Å) is only slightly larger than Mg (ionic radius 0.72 Å) (7), so molar volumes of Fe²⁺ end members exceed their Mg counterparts by at most a few percent (Table 1). By the same token, as the systematics of the bulk modulus-volume relation would suggest, compressibilities of Fe²⁺ and Mg end members typically differ by less than

Table 1. Bulk moduli (K) and molar volumes (V) for end member pairs of ferromagnesian minerals.

Mineral	Composition	K (GPa)	V (cm³)*	Source	
Periclase	MgO	162	11.2	(8)	
Wüstite	Fe _{1-x} O†	145 to 180	12.0 to 12.2	(8)	
Dolomite	CaMg(CO ₃) ₂	94	64.3	(25)	
Ankerite	CaFe(CO ₃) ₂	91	65.6	(<i>25</i>)	
Orthoenstatite	MgSiO ₃	107	62.7	(26)	
Orthoferrosilite	FeSiO ₃	101	65. 9	(27)	
Diopside	CaMgSi ₂ O ₆	113	66.0	(<i>28</i>)	
Hedenbergite	CaFeSi ₂ O ₆	120	67.9	(29)	
Pyrope	Mg ₃ Al ₂ Si ₃ O ₁₂	173	113.3	(30)	
Almandine	Fe ₃ Al ₂ Si ₃ O ₁₂	176	115.4	(30)	
Spinel	MgAl₂O₄	196	39.8	(31)	
Hercynite	FeAl₂Õ₄†	210	40.8	(32)	
Forsterite	Mg₂SiO₄	129	43.6	(33)	
Fayalite	Fe₂SiO₄	132	46.3	(34)	
Wadsleyite	Mg₂SiO₄	165	40.5	(11)	
Fe-Wadsleyite	(Mg _{0.75} Fe _{0.25}) ₂ SiO ₄	170	41.1	(11)	
Silicate spinel	Mg₂SiO₄	184	39.5	‡ ‡	
	Fe₂SiO₄	207	42.0	‡	

*All molar volumes from (35). †Samples of this mineral usually contain significant amounts of Fe³⁺. ‡This study.

Fig. 1. Two high-pressure diamond-anvil cell mounts containing multiple single crystals of silicate spinel. (Left) The first mount, with a gasket hold of 0.50 mm in diameter included end member Mg₂SiO₄ and Ni2SiO4 and three crystals of (Mg,Fe)₂SiO₄ with Fe/(Mg+Fe) = 0.60, 0.78, and 0.80, respectively. (Right) The second mount, with a gasket hole diameter of 0.45 mm, contained Ni

and Fe end members and two crystals of Mg₂SiO₄, as well as intermediate Mg-Fe spinels with Fe/(Mg+Fe) = 0.60 (Fe₆₀) and 0.78 (Fe₇₈).

Table 2. Compositions and synthesis conditions of silicate	e spinel single crystals (36).
--	--------------------------------

Composition	Temperature (°C)	Pressure (GPa)	Source and run number
Ni ₂ SiO ₄	1500	7.5	Yagi, Tokyo
Mg ₂ SiÕ₄	1400	20.0	Weidner, SUNY #859
(Fe _{.60} Mg _{.40}) ₂ SiO ₄ *	1600	14.5	Ko, SUNY #1013
(Fe _{.78} Mg _{.22}) ₂ SiO ₄ *	1600	12.6	Ko, SUNY #1097
(Fe , Mg ,), SiO,*	1610	12.6	Ko, SUNY #1102
(Fe _{.80} Mg _{.20}) ₂ SiO ₄ * Fe ₂ SiO ₄	1400	5.5	Yagi, Tokyo

*Use of ⁵⁷Fe Mössbauer spectroscopy indicates approximately 5% of total iron as Fe³⁺ in these samples.

a few percent. Only in the cases of wüstite and hercynite, both of which incorporate the smaller, less compressible Fe^{3+} in significant amounts (8, 9), is the Fe end member as much as 10% less compressible than the Mg end member.

High-pressure x-ray diffraction of single crystals in a diamond-anvil pressure cell provides the most accurate method to determine unit-cell volume-typically to a few parts in 10⁴. However, comparative studies of pressure-volume trends have been hampered by the difficult goal of pressure measurements below 10 GPa that are better than one or two parts in 10^2 . Thus, pressure-volume equations of state are poorly constrained, especially for incompressible crystals such as mantle minerals. One can circumvent this difficulty by mounting several crystals in a single diamond-cell mount with hydrostatic pressure medium (10, 11). In this way, relative volumes at several pressures provide an accurate measure of the relative compressibility:

$$\beta_1/\beta_2 \approx [(V_p/V_0)_1 - 1]/[(V_p/V_0)_2 - 1]$$

where β_1 and β_2 are compressibilities of the two crystals and V_0 and V_p are, respectively, the unit-cell volumes measured at room pressure and high pressure. Differences in compressibilities of two crystals as small as 1% have been documented with this equation, although individual compressibilities calculated from the same pressure-volume data may be in error by several percent (10, 11).

Magnesium-iron silicate spinel, which is only stable at pressures above ~7 GPa for γ -Fe₂SiO₄ to 20 GPa for γ -Mg₂SiO₄, has been proposed as a major silicate phase in the Earth's transition zone (4). Elasticity or pressure-volume parameters for equations of state have been reported for the Fe end member (12), the nickel and cobalt silicate analogs (13), and the Mg end member (14). No equation-of-state or high-pressure data have appeared for intermediate Mg-Fe silicate spinels, however.

For this study, I obtained single crystals synthesized in large-volume, high-pressure apparatus (Table 2). Samples included end member Ni_2SiO_4 , Mg_2SiO_4 , and Fe_2SiO_4 spinels, as well as intermediate Mg-Fe silicate spinels with Fe/(Mg+Fe) ratios of 0.60, 0.78, and 0.80 (hereafter referred to as Fe₆₀, Fe₇₈, and Fe₈₀). All crystals were examined first in air by single-crystal x-ray diffraction. Equant crystals no thicker than 60 μ m and with good x-ray peak shapes were selected for high-pressure study. The Fe-bearing samples were examined by Mössbauer spectroscopy for Fe³⁺, a significant component in some silicate spinels (15). The Fe end member had no detectable Fe^{3+} , whereas the intermediate Fe_{60} and

Table 3. Unit-cell volumes (Å3) versus pressure (GPa) for silicate spinel crystals. Data are listed in the order in which they were collected. Uncertainties in last digits are given in parentheses.

Pressure	Ni	Mg		Fe	Fe ₆₀	Fe ₇₈	Fe _{so}
			Five-spinel	mount			
Room P, in cell	521.13 (8)	527.10	0 (8)		546.61 (14)	552.45 (9)	552.89 (19)
2.02 (5)	516.69 (15)	521.4			541.50 (11)	547.23 (15)	547.74 (18)
3.26 (5)	513.96 (7)	518.10	0 (27)		538.10 (16)	543.94 (12)	544.52 (10)
	• • •		Six-spinel	mount		- · · · · · · · · · · · · · · · · · · ·	
Room P, in cell	521.22 (8)	526.60 (20)*	526.54 (13)†	558.80 (14)	546.42 (12)	552.45 (9)	
4.20 (5)	512.28 (8)	515.33 (13)	515.34 (12)	548.06 (12)	535.68 (8)	541.76 (7)	
2.20 (5)	516.49 (9)	520.43 (13)	520.56 (15)	553.22 (9)	540.75 (8)	546.86 (7)	
0.96 (8)	519.16 (9)	523.77 (19)			544.04 (13)	0.000 (1)	
0.68 (5)	519.76 (12)	524.65 (11)	524.49 (20)	557.06 (14)	544.67 (16)	550.57 (16)	
4.79 (7)	511.14 (15)	513.85 (13)	513.80 (34)	546.64 (11)	534.37 (7)	540.25 (20)	

*Values in this column are for the first of two crystals of Mg used in the six-spinel mount. †Values in this column are for the second crystal of Mg.

Fe78 samples contained approximately 5% of total Fe as Fe³⁺.

I used crystals up to 100 µm in diameter in two multiple-crystal mounts (16). The first mount (Fig. 1) contained five crystals: Mg and Ni end members and the Fe_{60} , Fe_{78} , and Fe_{80} intermediate silicate spinels. Data were collected on all crystals at room pressure and at 2.02 and 3.26 GPa. The second mount had a slightly smaller gasket hole and used six spinel crystals. These crystals were the nickel end member, two crystals of the Mg end member, a crystal of end member γ -Fe₂SiO₄, and the

Fig. 2. Relative volumes (V/V_0) versus pressure for five compositions of silicate spinel. The Fe_{so} points include data for both the Fe₇₈ and Fe₈₀ crystals. The Fe-bearing compositions are significantly less compressible than the Mg end member.

Fe60 and Fe78 intermediates. Unit-cell parameters of all six crystals were determined (17) at five pressures to 4.79 GPa (Table 3).

At every pressure, compressibility increased in the order Ni < Fe_{100} < Fe_{80} \approx Fe_{60} < Mg (Table 4 and Fig. 2). Average relative compressibilities, β_{Mp}/β_x , were 1.25 for Ni₂SiO₄, 1.13 for Fe₂SiO₄, 1.115 for Fe_{80} , and 1.105 for Fe_{60} , all ±0.01. Thus, compressibility of (Mg,Fe)₂SiO₄ silicate spinel increased significantly with increasing Fe content.

Pressure-volume data may be fit to a second-order Birch-Murnaghan equation of state, but resulting values for bulk moduli, K, are poorly constrained unless V_0 and the pressure derivative of the bulk modulus, K', are fixed (18). In the case of γ -Mg₂SiO₄, for example, unconstrained refinement of 11 pressure-volume data yielded a K of 183 \pm 5 GPa and a K' of 6 \pm 2. Recent equation-of-state studies of Mg_2SiO_4 (12) suggest that K' is close to 4.8. With that constraint on the present pressure-volume data, the calculated bulk moduli of the Mg and Ni end members are 184 ± 2 and 233 \pm 2 GPa, respectively. These values are close to the previously reported values of 182 ± 1 (14) and 226 ± 2 GPa (13) for the two compounds, based on Brillouin spectroscopy and powder x-ray diffraction. Bulk moduli of the three Fe-bearing spinels with K' constrained to 4.8 are $203 \pm 2, 205 \pm 2,$ and 207 \pm 3 GPa for Fe₆₀, Fe₈₀, and end member Fe spinels, respectively.

ume data emphasizes the compositional effects on both K and K' (18). A plot of Eulerian strain

$$f = [(V/V_0)^{-2/3} - 1]/2$$

$$F = P / [3f(1 + 2f)^{2.5}]$$

Eulerian strain $f = [(V/V_0)^{-2/3} - 1]/2$ versus Birch's normalized pressure, $F = P/[3f(1 + 2f)^{2.5}]$ intersects the F axis at the zero-pressure of bulk modulus and the algorithm. bulk modulus, and the slope indicates deviations of K' from a value of 4. Data for Mg silicate spinel, plotted in Fig. 3, sug- 0 gest that K' is slightly greater than 4 and \mathbb{C} that the bulk modulus is close to 182 GPa. which both agree with earlier work (14). 💆 In contrast, the pressure-volume data for Ni_2SiO_4 are consistent with K' of 4 and $\frac{2}{3}$ bulk modulus of 232 GPa. Data for the three Fe-bearing samples demonstrate that $\frac{1}{2}$ these spinels have bulk moduli significantly greater than that of γ -Mg₂SiO₄. Though slopes of F versus f curves are \in subject to large uncertainties, they suggest 2 that K' decreases with Fe content to <4 (a $\frac{1}{2}$ value of 3 is consistent with all three $\frac{3}{2}$ Fe-rich compositions). If so, then the $\overset{00}{\circ}$ difference in bulk moduli of Mg and Fe silicate spinels will be smaller at transition ∂ zone pressures.

These data indicate that Mg silicate spinel is approximately 13% more compressible than the Fe²⁺ end member. This difference is significantly larger than has been observed for any other Mg-Fe²⁺ mineral pair and goes against the predictions of bulk modulus-volume systematics. The

Finite-strain analysis of pressure-vol-

Table 4. Relative volumes (V/V₀) versus pressure (GPa) for silicate spinel crystals. Uncertainties in last digits are given in parentheses.

Pressure	Mg #1	Mg #2	Fe ₆₀	Fe ₇₈	Fe _{so}	Fe	Ni
Room P	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
0.68 (5)	0.99631 (20)	0.99611 (36)	0.99680 (36)	0.99660 (30)		0.99689 (25)	0.99719 (20)
0.96 (8)	0.99462 (25)	_ ` `	0.99564 (28)	_ ` ´		_	0.99604 (16)
2.02 (5)	0.98932 (15)	_	0.99065 (33)	0.99055 (28)	0.9907 (5)	_	0.99148 (25)
2.20 (5)	0.98828 (35)	0.98864 (30)	0.98962 (24)	0.98988 (18)	_ (1)	0.99001 (26)	0.99093 (16)
3.26 (5)	0.98293 (40)	_ ` <i>`</i>	0.98443 (37)	0.98460 (24)	0.9849 (4)	_	0.98624 (12)
4.20 (5)	0.97860 (35)	0.97873 (23)	0.98034 (24)	0.98065 (18)		0.98078 (32)	0.98285 (15)
4.79 (7)	0.97579 (24)	0.9758 (7)	0.97795 (21)	0.97792 (30)	_	0.97824 (30)	0.98067 (20)

ē

5

question stands: What is the cause of this anomaly?

A partial explanation may lie in the distinctive spinel structure, which features edge-sharing (Mg, Fe²⁺) octahedra with a short cation-cation distance of ~2.9 Å across the edges (19). The *d* electron repulsion across this shared edge may contribute to the relative incompressibility of Fe-rich silicate spinels compared to the dynamics of the smaller Mg end member. The presence of Fe^{3+} in the Fe_{60} and Fe_{78} samples may also increase their bulk moduli, which fall above a linear trend of bulk modulus versus composition as defined by the Mg and Fe values.

The anomalous trend of compressibility versus composition in Mg-Fe silicate spinels points to a fundamental change in the relative behavior of Fe²⁺ and Mg with increasing pressure. At crustal conditions, Mg and Fe^{2+} mimic each other in their crystal chemical roles in oxides and silicates. However, at pressures above 10 GPa their behavior is different.

At low pressure the majority of ferromagnesian silicates, including all rockforming orthosilicates, chain silicates, and layer silicates with octahedral Fe^{2+} and Mg, form continuous solid solutions and show almost complete octahedral site disorder between Mg and Fe²⁺. However, three of the most important high-pressure Mg-Fe silicates, wadsleyite β -(Mg,Fe)₂SiO₄ and

Fig. 3. A plot of Eulerian strain, f, versus Birch's normalized stress, F, for five silicate spinel compositions to provide equation-of-state information. Lines are weighted linear regression fits to F-f data. The zero-pressure bulk modulus is given by the F-axis intercept, whereas the deviation of the slope from zero corresponds to the deviation of K' from 4. These data demonstrate that compositions rich in Fe are significantly less compressible than the Mg end member. Furthermore, Mg silicate spinel has K' >4, whereas Fe-rich compositions have K' < 4.

the silicate perovskite and ilmenite forms of (Mg,Fe)SiO₃, show only limited Mg-Fe solid solution (20). Furthermore, recent crystallographic examination of intermediate high-pressure Mg-Fe phases reveals unusual degrees of Mg-Fe ordering, even in crystals rapidly quenched from temperatures above 1000°C. Significant Mg-Fe ordering has been documented in high-pressure samples of olivine (21), wadsleyite (22), and anhydrous phase B (23). High-pressure ordered olivine is particularly unusual because crustal olivines appear relatively disordered, even from slowly cooled environments (21, 24).

The distinction between the high-pressure crystal chemistries of Fe and Mg is further highlighted by the strong intercrystalline separation of these elements between phases at deep-earth conditions. The transition from (Mg,Fe)₂SiO₄ silicate spinel to (Mg,Fe)SiO₃ perovskite and (Mg,Fe)O magnesiowüstite, which defines the 670-km seismic discontinuity, is characterized by strong partitioning of Fe²⁺ into the oxide phase (4, 20). If the contrast between Fe and Mg increases toward the metallic Fe core, it could have significant implications for the compositions and properties of minerals deep in the lower mantle.

REFERENCES AND NOTES

- 1. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 58, 165 (1923).
- 2 O. L. Anderson and J. E. Nafe, J. Geophys. Res. 70, 3951 (1965); D. L. Anderson and O. L. Anderson, ibid. 75, 3494 (1970).
- 3. R. M. Hazen and L. W. Finger, ibid. 84, 6723 (1979)
- R. Jeanloz and A. B. Thompson, Rev. Geophys. 4 Space Phys. 21, 51 (1983); J. Ita and L. Stixrude, Eos 72, 281 (1991).
- Support for compositional homogeneity across 5. the 670-km seismic feature is provided by M. S. T. Bukowinski and G. Wolf [J. Geophys. Res. 95, 12583 (1990)] and by Y. Wang et al. [Science 251, 410 (1991)].
- 6. D. L. Anderson and J. D. Bass [Nature 320, 321 (1986)]; E. Knittle, R. Jeanloz, and G. L. Smith [*ibid.* **319**, 214 (1986)]; and L. Stixrude, R. J. Hemley, Y. Fei, and H. K. Mao [*Science* **257**, 1099 (1992)] are among those who argue for a compositionally stratified mantle.
- R. Shannon, Acta Crystallogr. A 32, 751 (1976). R. M. Hazen and R. Jeanloz, Rev. Geophys. 8. Space Phys. 22, 37 (1984).
- 9. D. H. Lindsley, Rev. Miner. 3, L1 (1976).
- 10. R. M. Hazen, Carnegie Inst. Washington Yearb 80, 277 (1981); R. J. Angel, R. M. Hazen, T. C. McCormick, C. T. Prewitt, J. R. Smyth, Phys. Chem. Miner. 15, 313 (1988); T. C. McCormick, R M. Hazen, R. J. Angel, Am. Miner. 74, 1287 (1989).
- 11. R. M. Hazen, J. Zhang, J. Ko, Phys. Chem. Miner. 17, 416 (1990).
- 12. L. W. Finger, R. M. Hazen, T. Yagi, Am. Miner. 64, 1002 (1979)
- J. D. Bass, D. J. Weidner, N. Hamaya, M. Ozima, S. Akimoto, Phys. Chem. Miner. 10, 261 (1984).
- 14. D. J. Weidner, H. Sawamoto, S. Sasaki, M. Kumazawa, J. Geophys. Res. 89, 7852 (1984); R. L. Meng, Y. Fei, D. J. Weidner, personal communication.

- C. R. Ross II, T. Armbruster, D. Canil, Am. Miner. 77, 507 (1992)
- 16. I used a Merrill-Bassett diamond-anvil cell [L. Merrill and U. A. Bassett, Rev. Sci. Instrum. 45, 290 (1974)] with 0.75-mm anvil faces, an Inconel 750X gasket (International Nickel, Inc., Toronto, Canada) with a hole 0.50 mm in diameter, and a 4:1 methanol:ethanol pressure fluid. Ruby chips provided an internal pressure calibration, as described by R. M. Hazen and L. W. Finger [Comparative Crystal Chemistry (Wiley, New York, 1982)]. Mounting multiple crystals requires one to trade off between larger crystals (which yield more accurate unit-cell parameters) and higher pressures (from gasket deformation). The first mount failed at 3.28 GPa when the 60-µm-thick Mg₂SiO₄ crystal broke into two smaller pieces. The second mount, with a gasket hole of 0.45 mm in diameter and crystals no more than 45 µm thick, was stable to 4.79 GPa, the highest pressure I have obtained with a six-crystal mount.
- 17. I determined unit-cell parameters on an automated four-circle diffractometer by centering up to 24 reflections from each crystal (28° < 20 < 50°) at eight positions, as described by W. C. Hamilton [in International Tables for X-Ray Crystallography,] Birmingham, U.K., 1974), vol. 4] and adapted for high-pressure studies by H. King and L. W. Finger *J. Appl. Crystallogr.* 12, 374 (1970)
- 18. R. Jeanloz and R. M. Hazen, Am. Miner. 76, 1765 (1991).
- B. Kamb, ibid. 53, 1439 (1968). More typical Novem 19. Fe-Fe distances across shared octahedral edges are 3.2 Å in Fe₂SiO₄ olivine and 3.0 Å in FeO. Y. Fei, H.-K. Mao, B. O. Mysen, *J. Geophys. Res.*
- 20. 96, 2196 (1991).
- 21. N. Aikawa, M. Kumazawa, M. Tokonami, Phys. Chem. Miner. 12, 1 (1985). L. W. Finger, R. M. Hazen, J. Zhang, J. Ko, A. 22
 - Navrotsky, ibid., in press.
- 23. R. M. Hazen, L. W. Finger, J. Ko, Am. Miner. 77, 217 (1992).
- 24. G. E. Brown, Jr., Rev. Miner. 5, 275 (1982); J. Stanek, S. S. Hafner, J. A. Sawicki, Am. Miner. 71, 127 (1986); T. Motoyama and T. Matsumoto, Miner. J. 14, 338 (1989).
- 25. N. L. Ross and R. J. Reeder, Am. Miner. 77, 412 (1992)
- D. J. Weidner, H. Wang, J. Ito, Phys. Earth Planet. 26. Inter. 17, P7 (1978). 27
- J. D. Bass and D. J. Weidner, J. Geophys. Res. 89, 4359 (1984). 28. L. Levien, D. J. Weidner, C. T. Prewitt, Phys.
- Chem. Miner. 4, 105 (1979). 29 J. Kandelin and D. J. Weidner, J. Geophys. Res.
- Downloaded 93, 1063 (1988). 30. These values are from a comparative compress-
- ibility study of grospydite garnets now in progress. See also J. D. Bass, ibid. 94, 7621 (1989).
- 31. D. H. Chang and G. R. Barsch, ibid. 78, 2418 (1973); A. Yoneda, J. Phys. Earth 38, 19 (1990). 32. H. Wang and G. Simmons, J. Geophys. Res. 77,
- 4379 (1972).
- 33. E. K. Graham and G. R. Barsch, ibid. 74, 5949 (1969); M. Kumazawa and O. L. Anderson, ibid., p. 5961.
- J. D. Bass, Eos 70, 474 (1989). 34.
- J. R. Smyth and D. L. Bish, Crystal Structures and Cation Sites of the Rock-Forming Minerals (Allen and Unwin, London, 1988).
- 36. Crystals were synthesized at the Institute for Solid State Physics, University of Tokyo, by T. Yagi or at the Center for High-Pressure Research, State University of New York (SUNY) at Stony Brook, by J. Ko or D. Weidner.
- 37. I thank J. Ko, D. J. Weidner, and T. Yaqi for the silicate spinel single crystals used in this study and Y. Fei (who also provided Mössbauer analy sis of the Fe-bearing samples), C. Meade, and C. Prewitt for valuable discussion and reviews of the manuscript. L. W. Finger and R. J. Angel devised improved operating procedures for the four-circle diffractometer

3 September 1992; accepted 4 November 1992