Structure and compression of crystalline argon and neon at high pressure

and room temperature
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Argon and neon crystallize in the face-centered cubic structure (Fm3m, z = 4)at 11.5 + 0.5 and
47.4 4+ 0.5 kbar, respectively, at 293 K. Single-crystal cell dimensions were obtained at 82 kbar for

argon and 144 kbar for neon with high-pressure, x-ray diffraction techniques. The data were

corrected to O K and fitted to a second-order Murnaghan equation of state with ¥, and K|,
constrained to results obtained in low-temperature experiments. No solid-solid phase transitions

are observed to the highest pressures studied.

PACS numbers: 62.50. + p, 61.55.Dc, 64.70.Dv, 64.30. + t

Rare-gas solids (RGS) have been studied extensively,
especially with regard to their P-T-V equations of state
(EOS).! Most of these investigations, however, have been
performed under cryogenic conditions. A diamond-window,
high-pressure cell (diamond cellj has been modified for the x-
ray study of compounds that are normally gaseous under
ambient conditions.”® Data are given, therefore, on the vari-
ation of argon and neon cell constants as a function of pres-
sure of 293 K. These data are also used to calculate a 0-K
equation of state.

Single crystals of RGS were produced in a cryogenic,
diamond-anvil cell, wherein liquefied Ne or Ar was con-
tained in T301 stainless-steel gaskets (with apertures 0.25
mm thick and 0.30 mm in diameter).® Argon and neon were
liquefied in a helium atmosphere. No contamination of the
Ne and Ar samples by helium was observed, on the basis of
previously reported freezing pressures of pure gases at 293
K.

At 293 K asingle crystal of argon formed from liquid at
11.5 4+ 0.5 kbar in the gasketed sample chamber. In similar
experiments on neon a single crystal formed from liquid at
47.4 4+ 0.5 kbar. Both Ar and Ne crystals were clear and
colorless, displayed no grain boundaries, and had no bire-
fringence. X-ray diffraction maxima for argon were sharp at
all pressures to 80 kbar, though some spot diffuseness was
observed above 80 kbar. Sharp diffraction maxima were ob-
served for neon to 144 kbar.

Rare-gas solids were studied by x-ray diffraction pho-
tography and four-circle diffractometry. Crystals were ori-
ented with precession photographs, and cubic unit-cell di-
mensions were determined either from reflection centering
on the automated diffractometer® or from measurements on
film. Unit-cell volumes determined from film measurements
are usually accurate to within 0.05%, whereas those from
diffractometry may be better than 0.02%. Diffractometry
takes several hours, compared with the few minutes required
for the film measuring procedure; at higher pressures some
occurrences of slow leakage of the pressurized gases favor
the latter procedure.

Pressure was measured to within 4- 0.5 kbar from the
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calibrated wavelength shift of the R, fluorescence lines of
small ruby crystals included in the mount.® Room tempera-
ture was 293 + 1 K over the period of study.

The positions and intensities of x-ray diffraction maxi-
ma are consistent with both Ar and Ne having the face-cen-
tered cubic metal structure. Values of unit-cell dimensions

TABLE 1. Unit-cell edge and molar volume for crystalline argon and neon

at 293 K.

Pressure a vV

(kbar) (A) {cm'/mole)

Argon
11.5(5) Crystals and liquid coexist
12.8(6) 5.0868(20} 19.819(16}
14.2(3) 5.0724(5) 19.651{4)
17.1(5) 4.9874(5) 18.680(4)
21.1(1) 4.9330(10) 18.075(7)
24.2(2} 4.90344(5) 17.752(1)
29.0(5) 4.83594(5) 17.029(1)
33.3(2) 4.7950(10) 16.600(7)
33.8(2) 4.7919(2) 16.568(2)
36.1(3) 4.7785(5) 16.430(3)
38.0(2) 4.7550(15) 16.188(10)
38.1(2) 4.7516(10) 16.153(7)
44.1(2) 4.714(8) 15.77(5)
47.7(1) 4.6834(20) 15.468(13)
50.0(3) 4.667(8) 15.31(5)
55.9(5) 4.6430(20) 15.071(13)
63.4(3) 4.603(8) 14.69(5)
67.8(4) 4.5930(20) 14.590(13)
71.2(1) 4.5830(20) 14.494(13)
81.7(6) 4.544(4) 14.128(25)
Neon

47.5(4) Crystals and liquid coexist
48.3(5) 3.7860(20) 8.171(9)
58.4(4) 3.72701) 7.795(4)
62.2(4) 3.7007(5) 7.631(2)
68.1(3) 3.684(3) 7.529(12)
72.0(3) 3.6614(10) 7.391(4)
72.3(5) 3.6499(10) 7.321(4)
77.1(4) 3.6424(20) 7.276(8)
80.1{3) 3.6361(10) 7.239(4)
87.7(4) 3.6101(20) 7.085(8)
87.9(5) 3.6007(30) 7.029(12)

110.0(5) 3.543(2) 6.697(8)

121.6(5) 3.516(2) 6.545(7)

133.1(5) 3.494(2) 6.423(7)

144.2(5) 3.472{2) 6.302(7)
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measured at 19 pressures for Ar and 14 pressures for Ne are
recorded in Table L.

A remarkable property of Ar and Ne is that with any
change of pressure greater than 3 or 4 kbar (i.e., a volume
change of 1 or 2%) the sample recrystallized to a new single
crystal or a small group of crystals with one large individual.
Rather than support the stress generated by a deforming
gasket with changing pressure, the sample recrystallized and
thus conformed with the changing shape of the sample
chamber. Furthermore, the crystal usually formed within

+ 2° of one of the two orientations with respect to the flat
diamond-anvil faces. In half of the runs a (220) plane was
parallel to the randomly oriented, polished diamond anvil.
Next in frequency of orientation was the (111) plane, which is
the plane of closest packing. A third plane, oriented parallel
to diamonds in four (13%) of the runs, is (211). The (100)
plane, on the other hand, was never within 15° of the anvil
surfaces. These nonrandom crystallization directions prob-
ably occurred as a result of the uniaxial stress associated with
the diamond-anvil design and do not not appear to be the
result of epitaxial growth on the diamonds.

Data from Table I may be used to calculate equation-of-
state parameters of crystalline Ar and Ne in terms of the bulk
modulus at the freezing pressure and its pressure derivatives.
A more useful approach, however, is to correct the observed
pressure for effects of temperature and zero-point vibration
energy using the equation of state

PWV\T)=P (V) + P,(V)=Pr(V,T), (1)
where P_ is the static pressure, P, is the zero-point vibration

pressure, and P;. is the so-called thermal pressure. In the
Debye approximation,

P,(V)=9y/8V)RO V), (2)
P (Vy=(BRTy/V)D(@®/T), (3)
and
O _ (T (7 x'dx
6] “

where r is the gas constant, @ is the Debye temperature, D is
the Debye function, y is the Griineisen parameter, and T is
the absolute temperature. If ¥ is given by y = (V /Vy)y, + 4,

TABLE II. Equation-of-state parameters for crystalline neon and argon.

Parameter Neon Argon

¥V, (em’/mole) 13.394* 22.557°

&, (K) 75.1¢ 93.34

12 205¢ 2.20¢

P, (kbar) - 1.337 — 1.0289

K, (kbar) 7.437° 23.701"

K} 7.071 + 0.057 6.97 +0.11
K{, (kbar™!) — 0.051 + 0.004 — 0.040 + 0.010
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FIG. 1. Calculated isotherms for neon (squares are 293 K observed values).

as suggested by Holt and Ross® and Kopyshev,” with 7, inde-
pendent of volume, then the Debye temperature is given by

OV)= @(,(—V&)me“(l — L) (5)
v Vo
where @, is the Debye temperature at V,,. Equations (1)}—(5)
have been used to calculate P, for each of the observed vol-
umes. These data were then fitted to a second-order Mur-
naghan equation of state of the form

rresan (2 ()
g

g=(K§ —2KK¢)'"?,

where K, K {, < and K { are the zero Kelvin static bulk mo-
dulus and its pressure derivatives. For neon and argon, ¥,
and K, were fixed at the low-temperature results derived
from the x-ray diffraction studies of Batchelder ef a/.’ and
Peterson et al.,'’ respectively. The Table I lists the values of
the parameters, and Figs. 1 and 2 are isothermal plots of the
results. The present data greee with the results of Anderson
and Swenson.®

Rare-gas solids may prove to be excellent hydrostatic
pressure media in future diamond-anvil cell experiments.
The RGS are extremely compressible and produce a hydro-
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FIG. 2. Calculated isotherms for argon (squares are 293 K observed values).
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static environment at high pressure, on the basis of the
sharpness of x-ray diffraction maxima. Furthermore, lattice
constants of these cubic phases are very sensitive to pressure
and may be used as an internal pressure calibration. In addi-
tion, it may be possible to derive a fundamental equation of
state for these materials from first principles. In that case,
the lattice constants of these phases would constitute a pri-
mary pressure standard.
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