CARBON MINERAL ECOLOGY: Predicting the "Missing" Minerals of Carbon

CARBON MINERALOGY TODAY:		
403 IMA approved mineral species		
Carbon Allotropes:	4	
Carbides:	10	
Carbonates:	>300	1/2/
Anhydrous	107	CALLY
Hydrated	>200	
Organic Minerals:	>50	
Hydrocarbons	10	1
Oxalates	12	

) Thomas Witzke + Abraxas Verla

Carbon Minerals: Frequency Distribution

403 carbon mineral species, known from 82,922 locality data, conform to an LNRE distribution.

We extrapolate that 145 additional carbon mineral species exist on Earth but have yet to be discovered.

Carbon Minerals: Coexisting Elements

Carbon minerals

C + O Minerals: Frequency Distribution

We predict that 135 of the 145 "missing" carbon mineral species are carbonates.

C Mineral Subsets: Frequency Distribution

118 of the 145 "missing" carbon mineral species incorporate H. 52 missing C minerals incorporate calcium.

C + Na Minerals: Frequency Distribution We predict that 82 of the 145 "missing" carbon mineral species do not incorporate Na. Therefore 63 missing Na + C minerals.

Analysis of other subsets, including other coexisting elements, tectonic settings, age, and lithological contexts, will pinpoint where to look for these missing minerals!

Hydrous sodium carbonates

Nahcolite Natron Thermonatrite Trona Wegscheiderite NaHCO₃ Na₂CO₃·10H₂O Na₂CO₃·H₂O Na₃(HCO₃)(CO₃)·2H₂O Na₅H₃(CO₃)₄

Predicted

Na₂CO₃·7H₂O

New phases in the system Na-C-O-H⁺Ca⁺REE

Why are several hydrous Na carbonates as yet undiscovered? They are boring!

Where should we look? Lake Natron, Tanzania

Courtesy of Tobias Fischer

@ www.africaimagelibrary.com

Saline lake evaporites; efflorescence/fumarolic on alkali lavas associated with carbonatites.

Where should we look? Oldoigno Lengai, Tanzania

Saline lake evaporites; efflorescence/fumarolic on alkali lavas associated with carbonatites.

Known hydrocarbon minerals PAHs

Carpathite $(C_{24}H_{12}) = Coronene$

Kratochvilite (C₁₃H₁₀) = Fluorene

Ratavite ($C_{14}H_{10}$) = Anthracene

Idrialite (C₂₂H₁₄) = Pentacene

Predicted hydrocarbon minerals PAHs

Pyrene (C₁₆H₁₀) ●

Chrysene (C₁₈H₁₂)

Tetracene (C₁₈H₁₂)

Search for these in thermally altered coal.

Predicted hydrocarbon minerals: PAHs

Search for these phases in thermally altered coal deposits, such as coal mine fires.