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Abstract A population model is introduced to describe the mineral species frequency
distribution. Mineral species coupled with their localities conform to a large number
of rare events (LNRE) distribution: 100 common mineral species occur at more than
1,000 localities, whereas 34% of the approved 4,831 mineral species are found at
only one or two localities. LNRE models formulated in terms of a structural type
distribution allow the estimation of Earth’s undiscovered mineralogical diversity and
the prediction of the percentage of observedmineral species that would differ if Earth’s
history were replayed.

Keywords Statistical mineralogy ·Mineral ecology ·Mineral frequency distribution

1 Introduction

The search for predictive statistical models of natural systems represents an ongoing
opportunity and challenge in applied mathematics. Here the extensive and growing
data resources onmineral species and their localities are employed to identify and para-
meterize frequency distributions of Earth’s mineral kingdom. These models, for the
first time, facilitate prediction of Earth’s total, but as yet undiscovered, mineralogical
diversity.
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The frequency distribution of mineral species in Earth’s near-surface environment,
as well as on other terrestrial planets and moons, arises from both deterministic factors
and chance events (Hazen et al. 2015). Mineral diversity is defined as the number of
different mineral species, each of which has a unique combination of crystal structure
and chemical composition as approved by the InternationalMineralogical Association
(http://rruff.info/ima). Deterministic factors in mineral diversity are illustrated by the
positive correlation between the abundances of crustal elements and the numbers of
mineral species containing those elements (Hazen et al. 2015). The most common and
volumetrically significant minerals, which form from the most abundant crustal chem-
ical elements (including oxygen, silicon, iron, magnesium, aluminum, and calcium),
are known as the rock-forming minerals. Their role in the frequency distribution of
terrestrial planets and moons is a necessity in mineral evolution, and thus potential
Earth-like planets in other star systems are expected to show similar distributions of
these common rock-forming minerals. However, chance also plays an important role
in the diversity of mineral species, in particular for rare minerals found at only one or
two localities.

As of February 2014, 4,831 mineral species have been identified and reported on
Earth. The characteristic mineral species frequency distribution, which records the
number of localities for each mineral species, is right skewed with a heavy tail, as
illustrated in Fig. 1. The mineral species with the highest frequency (quartz with
approximately 45,000 reported localities) is ranked number 1, while 100 mineral
species (2%) have been reported to occur at 1,000 or more localities. By contrast,
22% of mineral species have been found at only one locality and 12% are found at
only two localities, while more than half of all mineral species are found at five or
fewer localities. Hazen et al. (2015) proposed that the frequency distribution ofmineral
species with rare occurrence indicates that many more mineral species are yet to be
discovered, have occurred in the past but are lacking on Earth today, or never formed
owing to chance events.

The data of this study consist of the list of localities, as well as the list of mineral
species found at those localities, as of February 2014 from the crowd-sourced web-

Fig. 1 Observed number of localities reported for each mineral species, called the frequency, versus the
rank. The mineral species are ranked according to the frequencies
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site http://Mindat.org. There are 135,415 distinct localities and, when counted over
all mineral species, these data provide 652,856 observations (each observation being
a unique mineral species-locality pair), which are referred to as the sample size. By
comparison, in lexical statistics the sample size is the total number of words in a book
(Baayen 1993), while in ecology the sample size could be the total number of individ-
ual plants (Shen et al. 2003). The objective is to identify a population model for the
frequency distribution of mineral species on Earth. Discovering such models will per-
mit the estimation of howmanymineral species are yet to be discovered. Furthermore,
the number of mineral species that would differ from those that have been discovered
on Earth as of today can be predicted if a re-sampling of mineral species on Earth
with a sample size of 652,856 observations could be performed, where approximately
4,831 minerals were discovered anew. Answers to these questions inform efforts to
characterize Earth-like planets in other star systems.

The http://Mindat.org database is crowd-sourced, containing data both from the
literature and from the mineral collecting community. As such, it contains inherent
biases. The list of localities of the most common minerals likely has some problems.
For instance, on the one hand, quartz localities will be dominated by those with aes-
thetic pieces, while on the other hand, the presence of minor or insignificant quartz
might not have been noted by the collectors. In contrast, it is likely that the data on the
extremely rare species will be quite accurate because the rare occurrences are usually
noted in the literature and the low numbers make it easy to keep records. The data
from http://Mindat.org represent a snapshot of their database recorded on February
2014. The snapshot was copied and the analysis was conducted on the copy.

Models for the frequency distribution used in the fields of ecology and linguistics
can provide insight to mineral frequency distributions because they are also concerned
with estimation of the sizes of type-rich populations. The challenge of estimating the
number of biological species in an ecological population has been studied for decades
(Fisher et al. 1943). For example, biologists and ecologists are concerned with assess-
ing the diversity and richness of plant and animal species (Miller and Wiegert 1989),
as well as with the effectiveness of predicting the number of new species, those pre-
sumed to exist but that have not yet been observed, in further taxonomic sampling
(Shen et al. 2003). Microbial ecologists may be interested in estimating the number of
taxa in amicrobial population (Bunge et al. 2014). Alternatively, the field of linguistics
uses models that estimate an author’s vocabulary size and idiosyncrasies (Efron and
Thisted 1976).

Bunge and Fitzpatrick (1993) provide an overview of research and methods to
estimate the number of species. Several statistical sampling theoretical methods exist
for estimating the population size (Burnham and Overton 1978, 1979; Chao 1984;
Chao and Lee 1992; Chao et al. 2000; Chao and Bunge 2002). Methods based on
non-parametric maximum likelihood estimation can be found in Norris and Pollock
(1998) and Wang (2010). One method for estimating the number of new species in
taxonomic sampling involves extrapolation of a fitted parametric model to a species
accumulation curve representing the number of observed species as a function of
sample size (Keating et al. 1998; Soberón and Llorente 1993). Bunge and Barger
(2008) provide an overviewof parametricmodels used in the literature that are based on
mixed-Poisson distributions fitted to the frequency count data by maximum likelihood
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methods. Several choices exist for mixture models, including lognormal, gamma,
inverse Gaussian, the generalized inverse Gaussian, and a mixture of two or three
exponentials (Bunge and Barger 2008). For example, the generalized inverse Gauss–
Poisson distribution (GIGP) was introduced by Sichel (1975, 1986) and was applied
in Heller (1997), who used a maximum likelihood approach for estimation of the
parameters regarding counts of filarial worms onmites that live on rats (Baayen 2001).
The GIGP distribution is used only rarely in ecology, probably because of numerical
difficulties in fitting the model (Bunge and Barger 2008).

Baayen (2001) presents a family of models called the large number of rare events
(LNRE) models for studying word frequency distributions. A LNRE distribution is
characterized by numerous species/words that have extremely low relative abundance
probabilities (Baayen 2001). A LNRE model is formulated in terms of a structural
type distribution and takes into account the number of unobserved species/words in
the population, thereby allowing the calculation of the total size of the population by
extrapolation (Baroni and Evert 2007). Baayen (2001) presents two LNRE models:
the lognormal and the GIGP structural type distribution. He also presents models that
are not identified as proper LNRE models but recognized as generalized Zipf’s law,
for instance, the Yule–Simon model. Evert (2004) introduced two additional LNRE
models that are based on the Zipf–Mandelbrot law: the Zipf–Mandelbrot (ZM) and
the finite Zipf–Mandelbrot (fZM) LNRE models. Baroni and Evert (2005, 2007)
found that the ZM, fZM, and GIGP LNRE models have better or at least the same
extrapolation qualities as other models. In the following sections, these varied models
will be applied to mineral species-locality data.

2 Introduction to LNRE Mineral Frequency Distribution

In statistical mineral ecology, the techniques andmodels developed in lexical statistics
to model the word frequency distribution are adapted to model the frequency distri-
bution of minerals. In particular, the notation and techniques used in Baayen (2001)
and Evert (2004) are as follows.

Let S denote the population size of distinct mineral species on Earth and denote the
i th mineral species by xi for i = 1, 2, . . . , S. Assume each mineral species xi has a
population probabilityπi (relative abundance) of being sampled at an arbitrary locality,
where π1 ≥ π2 ≥ · · · ≥ πS defines the ordering schemes and

∑S
i=1 πi = 1. Let N be

the number of distinct mineral species-locality pairs, which is the sum of the number
of mineral species found in all localities. Refer to N as the sample size. Assume that
a sample of N mineral species-locality pairs is randomly and independently drawn
from the population of distinct minerals species with outcomes in any of S mineral
species. Let fi (N ) denote the frequency of the i th mineral species xi in the sample of
N mineral species-locality pairs. Here fi (N ) is the number of distinct localities for xi
as a function of the sample size N . Then fN = ( f1(N ), f2(N ), . . . , fS(N )) follows a
multinomial distribution,where themarginal distribution of each frequency is binomial
with N trials and success probability πi . Let m denote the number of localities, also
called frequency class. Thus, the probability that the i th mineral species xi is found at
exactly m localities is given by
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P( fi (N ) = m) =
(
N

m

)

πm
i (1 − πi )

N−m ≈ (Nπi )
m

m! exp (−Nπi ). (1)

In the last line, the binomial probabilities were approximated with the Poisson prob-
abilities with mean Nπi for mineral species xi , because N is large and πi is small
for all i . Since a sample of N mineral species-locality pairs will not contain all the
different mineral species in the population, standard practice in this type of modeling
is not to focus on the individual species, but instead to group the species within the
same frequency class m.

Let I[ fi (N )>0] be the indicator function, which is 1 if the i th mineral species xi is
present in the sample of size N and 0 otherwise. Denote the number of distinct mineral
species in a sample of N mineral species-locality pairs by V (N ) = ∑S

i=1 I[ fi (N )>0].
The graph of V as a function of N is called the mineral species accumulation curve. As
of February 2014, the total number of distinct mineral species found is V (N ) = 4,831
for N = 652,856. Let I[ fi (N )=m] be the indicator function, which is 1 if the i th
mineral species xi has frequency m and 0 otherwise. Denote the number of distinct
mineral species with exactly m localities in a sample of N mineral species-locality
pairs by Vm(N ) = ∑V (N )

i=1 I[ fi (N )=m] = ∑S
i=1 I[ fi (N )=m]. Notice that the sum was

extended to include the entire population size S, since the number of unobserved
mineral species V0(N ) has frequency zero in the sample. Thus, the population of
distinct mineral species is split into the observed and unobserved mineral species, that
is S = V (N ) + V0(N ). The sequence (V1(N ), V2(N ), . . . , VV (N )(N )) is called the
observed frequency spectrum. For example, the number of distinct mineral species
found at only one or two localities is V1(N ) = 1,062 and V2(N ) = 569. Notice
the following identities N = ∑

m m Vm(N ) and V (N ) = ∑
m Vm(N ). Using Eq. (1)

(Baayen 2001), expected values of Vm(N ) and V (N ) are given, respectively, by

E(Vm(N )) =
S∑

i=1

(Nπi )
m

m! exp (−Nπi ), (2)

and

E(V (N )) =
S∑

i=1

(1 − exp(−Nπi )). (3)

Notice also that the derivative of E(V (N )) with respect to N

d

dN
E(V (N )) = E(V1(N ))

N
, (4)

is equal to the joint probability of the unobserved mineral species in the sample of size
N (Baayen 2001). Given the large number of minerals with extremely low relative
abundance probabilities, the mineral frequency distribution is a LNRE distribution
(Baayen 2001; Khmaladze 1987). This distribution indicates that many of Earth’s
mineral species remain undiscovered.

For example, 22%of all knownmineral species are found at only one locality. In this
distribution, the sample relative frequency of each species cannot be used to estimate
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the corresponding population probability even for very large sample sizes. The sample
relative frequencies tend to overestimate the population probabilities because there is
no knowledge about the weight of the unobserved portion of the distribution. Further-
more, the sample relative frequencies will also change with the sample size N . Baayen
(2001) asserted that the sample size has to be extremely large in order to observe the
asymptotic behavior of the mineral species accumulation curve. A parametric model
from the family of the LNREmodels that takes into account the unobserved species can
be used to handle this problem. Note that the mineral frequency distribution, like most
word frequency distributions, does not rigorously satisfy the mathematical condition
of the LNRE property as given in Khmaladze (1987) and Khmaladze and Chitashvili
(1989). However, in practice, the mineral frequency distribution and many empirical
word frequency distributions behave like a LNRE distribution for which the law of
large numbers does not hold (Baayen 1993).

The structural type distribution is defined by G(π̃) = ∑S
i=1 I[πi≥π̃ ], which is the

number of mineral species in the population that have probability greater than or equal
to π̃ (Baayen 2001). The structural type distribution G(π̃) will be approximated by a
continuous function G(π̃) = ∫ ∞

π̃
g(π)dπ , where g(π) is a type density function that

satisfies g ≥ 0 and
∫ ∞
0 πg(π)dπ = 1 (Evert 2004). The population size is given by

S = ∫ ∞
0 g(π)dπ . Since G is of bounded variation, the expressions in Eqs. (2) and (3)

can be written in terms of the Stieltjes integrals (Baayen 2001)

E(Vm(N )) =
∫ ∞

0

(Nπ)m

m! exp (−Nπ)g(π)dπ, (5)

and

E(V (N )) =
∫ ∞

0
(1 − exp (−Nπ))g(π)dπ. (6)

Observe that the model is a mixed-Poisson distribution, where the population abun-
dances of the individual mineral species can be considered independent random
variables. In this paper, the GIGP structural type distribution (Baayen 1993, 2001)
will be used as a model for G(π̃). This model was introduced by Sichel (1971, 1975,
1986), where the type density function is given by

g(π) =

(
2
bc

)γ+1

2Kγ+1(b)
πγ−1 exp

(

− π

c
− b2c

4π

)

,

with parameters in the range −1 < γ < 0, b ≥ 0, and c ≥ 0, and where Kγ (b) is
the modified Bessel function of the second kind of order γ and argument b (Baayen
2001). It follows from integration of Eqs. (5) and (6)

E(Vm(N )) = 2Z

bKγ+1(b)(1 + N/Z)γ /2

(
bN

2Z
√
1+N/Z

)m

m! Km+γ (b
√
1 + N/Z), (7)
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and

E(V (N )) = S − E(V0(N )) = 2Z

b

Kγ (b)

Kγ+1(b)

[

1 − Kγ (b
√
1 + N/Z)

(1 + N/Z)γ /2Kγ (b)

]

, (8)

where the population size is S = 2
bc

Kγ (b)
Kγ+1(b)

(Baayen 2001). Here Z = 1
c represents

the unit of measurements of mineral species-locality pairs for which the number of
occurrences for a particular mineral species is Zπ .

2.1 Expected Differences in Numbers of Mineral Species from Two Earth-Like
Planets

In this section, someof the non-parametric estimators that are used in statistical ecology
to estimate the number of species in a population will be described. Subsequently, a
description on how to estimate the expected number of new mineral species to be
discovered in a second sample among the unobserved species in the initial sample
from the population of mineral species will be given. The coverage of a sample is
defined to be the total relative abundance of mineral species discovered in the sample.
That is, the coverage of a sample of size N is given by C = ∑S

i=1 πi I[ fi (N )>0] (Solow
and Polasky 1999; Wang 2011). According to Baayen (2001), one estimator for the
sample coverage is given by

Ĉ = 1

N

∑

m=1

m∗E(Vm(N )) = 1 − E(V1(N ))

N
≈ 1 − V1(N )

N
,

where m∗ ≈ (m + 1) E(Vm+1(N ))
E(Vm(N ))

are the Good–Turing estimates (Good 1953).
Let S2 be the number of new mineral species that are to be discovered among

the unobserved species V0(N ) in a second sample of size M . The estimation of the
expected number of new mineral species E(S2) (Shen et al. 2003; Solow and Polasky
1999) is described in this section. Denote its estimator by Ê(S2). Solow and Polasky
(1999) proposed a quick estimator for the expected number of new species, given the
information in the initial sample and assuming equal abundance for the unobserved
species. The estimator proposed by Solow and Polasky (1999) is given by

Ê(S2) = V̂0(N )

⎛

⎝1 −
(

1 − 1 − Ĉ

V̂0(N )

)M
⎞

⎠ , (9)

where the estimator of V0(N ) is obtained by Chao (1984)

V̂0(N ) = V 2
1 (N )

2V2(N )
, (10)

and Ĉ = 1 − V1(N )
N is the Good–Turing estimate. The estimator V̂0(N ) could be

replaced by other estimators. Shen et al. (2003) showed that the estimator in Eq. (9) is
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also valid under the assumption that species with equal frequencies in the sample also
have equal relative abundances in the population. They replaced the estimator of the
unseen species V̂0(N ) in Eq. (9) with an estimator derived by Chao and Lee (1992)
and Chao et al. (2000), where the estimator incorporates the first k rare species in the
sample. Define the total number of rare species in the sample by S0 = ∑k

m=1 Vm(N )

and the sample coverage by C̃ = 1 − V1(N )
∑k

m=1 mVm (N )
. Then the estimator proposed by

Chao and Lee (1992) and Chao et al. (2000) of the unobserved species is given by

V̂0(N ) = S0

C̃
+ V1(N )

C̃
γ̂ 2 − S0, (11)

where γ̂ 2 is an estimator of the squared coefficient of variation of species abundance.
For the total number ofmineral species γ̂ 2 = 0.448, computedwith k = 10.According
to Chao et al. (1993) and Shen et al. (2003), a value of k = 10 has shown to provide the
best estimates in empirical studies. A third estimator to consider is to replace V̂0(N )

in Eq. (9) by the jackknife estimator (Burnham and Overton 1978, 1979). The kth
order jackknife estimator of V̂0(N ) is given by

k∑

m=1

(−1)m+1
(
k

m

)

Vm(N ). (12)

The expected number of new mineral species can be estimated by extrapolating from
the species accumulation curve fitted to theLNREmodel from sample size N to sample
size 2N and subtracting the expected number of mineral species at sample size N .
That is

Ê(S2) = E(V (2N )) − E(V (N )), (13)

where the two samples have equal sample sizes N . The resulting value is the estimate
of the expected number of new species to be observed in a second sample of size N
that were not expected to be observed in the initial sample of size N . The resulting
value is multiplied by 2 in order to estimate the number of different mineral species
distributed over the two samples. This value is an estimate of the expected number of
mineral species that will be different in two random samples of the same size from
two modeled Earth-like planets. The performance of the estimators described in this
section will be examined with Monte Carlo simulations.

3 Results

In this section, a LNRE model is fit to the total mineral species frequency spec-
trum. The R-package, zipfR, (Evert and Baroni 2007, 2008) is used to fit the
frequency spectrum of known mineral species to a LNRE model. Sichel’s GIGP
LNRE model fits well to the data. The parameters were estimated by minimizing,
through the Nelder–Mead algorithm, the simplified version of the multivariate chi-
squared test for goodness-of-fit using the first 11 spectrum elements. The parameters
are γ = −0.419, b = 0.013, and Z = 70.462, with χ2 = 10.36, d f = 13, and
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p-value = 0.66. Figure 2a, b illustrates the frequency spectrum for the observed val-
ues and expected values using Sichel’s model at sample size N = 652,856. Notice that
E(V1(N )) underestimates V1(N ) while E(V2(N )) overestimates V2(N ). The number
of distinct mineral species on Earth is estimated to be S = 6,394. Thus, there are 1,563
mineral species yet to be discovered, assuming the application of current sampling and
identification techniques and present-day mineral formation processes. The expected
value and variance of the total number of distinct mineral species are 4,826 and 662,
respectively.

An important aspect in LNRE modeling is the concept of the LNRE zone (Baayen
2001). The LNRE zone is defined by Baayen (2001) as the range of the sample size
N for which the expected species accumulation curve is still increasing, while the
expected number of rare species is non-negligible. Accordingly, most books/texts are
located in the central LNRE zone where E(V1(N )) is still increasing. The mineral
species frequency distribution appears to be in Baayen’s (2001) definition of the late
LNRE zone. The late LNRE zone is defined by the values of N in the LNRE zone
for which E(V1(N )) is decreasing. Outside the LNRE zone, the species accumula-

Fig. 2 In a, the light barplots
represent the observed spectrum
elements and the dark barplots
represent the expected values of
the spectrum elements. In b, the
filled circles denote the observed
spectrum elements. The solid
line represents Sichel’s fit
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Fig. 3 Expected mineral
species accumulation curves,
extrapolated at four times the
sample size (N = 652,856),
using Sichel’s model

tion curve reveals its asymptotic limit for finite population sizes while E(V1(N )) is
negligible. Outside the LNRE zone, the sample relative frequencies can be used to esti-
mate the population probabilities (Baayen 2001). Figure 3 shows the expected mineral
species accumulation curves for E(V (N )) and the first two frequency spectrum ele-
ments E(V1(N )) and E(V2(N )). The point at which the vertical dashed line intersects
the x-axis denotes the current value of the sample size N = 652,856. Figure 3 indicates
that the distribution is in the late LNRE zone, because the maximum of E(V1(N ))was
expected to be achieved for a sample size smaller than N = 652,856. At that sample
size, twice as many minerals species are expected to be found at only one locality as
found at only two localities (Baayen 2001). Since E(V (N )) is still increasing, new
minerals are predicted to be discovered but the growth rate of the discovery is expected
to decrease since the inflection point was reached for N less than 652,856. Notice also
that, asmoreminerals are continued to be sampled at new localities, the total number of
minerals found at only one locality is predicted to decrease because mineralogists will
continue to find previously discovered minerals at new localities. The current growth
rate for the total number of new minerals species is 0.0016 using Eq. (4). Thus, if
an additional mineral is sampled at a new locality at sample size N = 652,856, the
probability that this mineral is a new species is 0.16%.

3.1 Extrapolation Quality and Prediction Performance

The extrapolation quality of Sichel’s GIGP LNRE model was tested using a related
technique described in Baroni and Evert (2005). There were 100 random sub-samples
selected without replacement of sample sizes N/2 from the original sample of N =
652,856mineral species-locality pairs. The observed frequency spectra of the 100 sub-
samples were then fit to Sichel’s GIGP LNRE model and for each model extrapolated
from sample size N/2 up to size N , which corresponds to two times the estimation size.
The resulting averages of the expected values were compared to the expected values
obtained by binomial interpolation using the original sample of size N = 652,856.
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The binomial interpolation described in Baayen (2001) uses the frequency spectrum
to compute expected values E(V (N )) for sample sizes up to the sample size N for
which the frequency spectrum was obtained.

The experiment was repeated using 25 and 10% of the data and extrapolated up to
four and ten times the estimation sizes, respectively. The GIGP LNRE model extrap-
olates reasonably well when the parameters are estimated using 25 and 50% of the
data but not when using only 10% of the data. These findings are consistent with those
previously reported (Baroni and Evert 2005). The extrapolated values E(V (N )) tend
to underestimate the values obtained by binomial interpolation. The average values of
the 100 sub-samples at size N are 4,747 (80.6) and 4,796 (36.9) using 25 and 50%
of the data, respectively. The results from using 25 and 50% of the data are illustrated
in Fig. 4a, b. Solid curves represent the expected mineral species accumulation curves

Fig. 4 Solid curves are the
expected mineral species
accumulation curves using
binomial interpolation of the
original sample. The dashed
curves are the averages of the
expected values computed using
Sichel’s model of sizes for a
N/4 and for b N/2
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using binomial interpolation of the original sample of size N = 652,856. The dashed
curves are the averages of the expected values E(V (N )) computed using Sichel’s
model for sample sizes N/4 (Fig. 4a) and N/2 (Fig. 4b). The points at which the
vertical dashed lines intersect the x-axis denote the values N/4 (Fig. 4a) and N/2
(Fig. 4b). In both figures the values of the GIGP curve to the left of these vertical
lines are interpolated values and the values to the right are extrapolated values. It can
be concluded that there exist more rare mineral species, each with a lower sample
relative frequency, than expected. As a result, the number S = limN→∞ E(V (N )) of
distinct mineral species in the population is likely underestimated (Baayen 2001). The
reasons for this underestimation could be that the sample incorporates inter-species
correlations, and thus is not random (Baayen 2001). For example, some groups of
mineral species tend to be found together in the same locations. In addition, as a result
of new and improved high-resolution sampling techniques, new mineral species are
discovered more frequently than in the past. The numbers of new minerals being dis-
covered are influenced by the mineralogical techniques employed. For example, an
ongoing program at Caltech conducted by Ma et al. (2014) has identified a number of
nanometer-scale minerals that could not have been identified by the light microscope
techniques of earlier decades.

The prediction performance of the model for predicting the number of distinct min-
eral species was examined using a cross-validation technique as described in Baroni
and Evert (2007) with 20 non-overlapping sub-samples. The sample size of the test
set was approximately three times the sample size of the training set. The root mean
squared relative error goodness-of-fit measure is obtained to be 4.0% using the GIGP
LNRE model.

3.2 Expected Number of Different Mineral Species in Two Random Samples

Using the estimators given in Eqs. (9) to (13), the population size of all mineral species
on Earth is estimated, as well as the expected number of new mineral species Ê(S2)
that would be discovered among the previously unobserved mineral species on Earth,
in a second sample of the same sample size N = 652,856, which is the observed
sample size. The results appear in Table 1. Method 1 refers to the estimator proposed
by Solow and Polasky (1999) using the estimator by Chao (1984) for S. Method 2
refers to the estimator proposed by Shen et al. (2003) with the estimator by Chao
and Lee (1992) and Chao et al. (2000) of order k = 10 for S. Method 3 refers to the
estimator proposed by Solow andPolasky (1999) using the jackknife estimator of order
4 for S. Method 4 refers to extrapolation from the GIGP LNRE model. Since there is
no known analytic form reported for the probability distribution of the GIGP model
(Evert and Baroni 2008), the performance of the estimators in Table 1 was examined
using 200 pairs of non-parametric Bootstraps samples (Efron and Tibshirani 1993;
Shen et al. 2003). Random samples of size N = 652,856 were generated from the
mineral frequency distribution and for each sample an additional sample of the same
sample size was generated. The number of newmineral species observed in the second
sample (the true estimated values) and the estimated values were calculated using the
estimators given in Table 1. The average value of the 200 true values and the average
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Table 1 Estimated values of S and Ê(S2) for all the mineral species using sample size N = 652,856

Method 1 2 3 4

S 5,822 (80.1) 5,726 (56.7) 6,980 (215.2) 6,394

Ê(S2) 652 622 838 662

The standard errors of S are included in parenthesis for the first three estimators. The four methods are
described in the text

Table 2 Using 200 Monte Carlo simulations to compare the values of Ê(S2) for all the mineral species

Estimators by N = 10,000 N = 100,000 N = 652,856

S. P. (1999)/Chao (1984) 379.9 (22.6) 588.7 (26.0) 318.3 (20.7)

Shen et al. (2003) 384.5 (20.8) 595.1 (20.5) 318.3 (15.3)

S. P. (1999)/jackknife 434.7 (22.8) 718.0 (35.9) 433.0 (23.3)

GIGP 396.9 (22.1) 621.3 (20.8) 357.3 (13.7)

True value 402.6 (18.0) 638.8 (22.8) 339.8 (17.1)

The standard errors are included in parenthesis. S. P. refers to the estimator proposed by Solow and Polasky
(1999)

value of the 200 estimated values were obtained along with the sample standard errors
of the estimators. The experiment was repeated for sample sizes N = 10,000 and
N = 100,000. The results appear in Table 2.

For N = 10,000, the value of Ê(S2) obtained by extrapolation of the GIGP
model is close to the true value. It is well known that the estimator proposed by
Chao (1984) underestimates the population size S (Shen et al. 2003; Wang 2011) and
the same tendency is seen by the estimators proposed by Chao and Lee (1992) and
Chao et al. (2000). Thus, these two estimators provide lower bounds for the popula-
tion size of distinct mineral species and, hence, for Ê(S2). Non-parametric bootstrap
techniques are unreliable for estimation of uncertainty for heavy-tailed distributions
(Kyselý 2010). An alternative technique should be employed in testing the estima-
tors and to obtain standard errors of the estimators. For the total mineral dataset, the
GIGP model performs better in computing Ê(S2) compared to the other estimators.
Therefore, the value of Ê(S2) obtained from extrapolation of the species accumula-
tion curve fit to the GIGP LNRE model was employed. It follows from Table 1 that
Ê(S2) = 662. Thus, in two random samples from the population of mineral species on
Earth, it is expected that 662×2 = 1,324 mineral species will be different. Therefore,
(Ê(S2)/E(V (N )) × 100 = (662/4,826) × 100 = 13.7% of the species are expected
to be different over two samples. An interpretation of this value indicates that two iden-
tical Earth-like planets are expected to have 4,826− 662 = 4,164 minerals species in
common. Since extrapolation of the GIGP model tends to underestimate the number
of distinct mineral species, the number of different mineral species in two random
samples from two Earth-like planets is proposed to be larger than this value. Thus, the
number 1,324 or approximately 13.7% of species is a lower bound for the number of
different mineral species on two Earth-like planets.
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4 Conclusion

This contribution is the first in a series of studies that attempts to apply largemineralog-
ical data resources and statistical methods to understand the diversity and distribution
of mineral species on Earth, as well as other terrestrial planets and moons. It is shown
that the distribution of Earth’s mineral kingdom, which is dominated by rare mineral
species found at few localities, is effectively modeled using LNRE models. Two sig-
nificant conclusions are: (i) that the present inventory of 4,831 described and approved
mineral species is significantly incomplete. At least 1,500 mineral species remain to
be discovered employing current techniques; and (ii) a replaying of mineral evolution
on Earth, repeating the same deterministic factors (for example, the same ratios of
chemical elements and biological processes), would result in more than 13.7% of
mineral species different from those discovered thus far.

Many avenues await further exploration. What model works best for other ele-
ments, or for subsets of mineral species-locality data that reflect geographic, spatial
correlation effects, tectonic, age, or other restrictive factors? Are any aspects of min-
eral species frequency distributions indicative of life-biosignatures that might apply
to other worlds? These questions will provide a dynamic focus for future studies.
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