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A bulk modulus-volume relationship is demonstrated for cation coordination polyhedra in a variety of
structure types including oxides, silicates, halides, sulfides, phosphides, and carbides: K, (d)*/S%z.z, =
7.5 (Mbar A%), where K,, is the polyhedral bulk modulus (in megabars), (d) is the mean cation-anion sep-
aration (in angstroms), z, and z, are the cation and anion formal charge, and S? is an empirical ionicity
term, defined as 0.50 for oxides and silicates and calculated to be 0.75 for halides; 0.40 for sulfides, sele-
nides, and tellurides; 0.25 for phosphides, arsenides, and antimonides; and 0.20 for carbides. The bulk
modulus of a substance depends on the bulk moduli of component polyhedra and the manner in which
these polyhedra are linked. In corner-linked structures, such as quartz and framework silicates, mineral
bulk moduli are significantly less than those of constituent corner-linked polyhedra, because of accom-
modations resulting from changes of the metal-oxygen-metal angles. In layer structures such as micas,
with extensive edge sharing within the layers but weak bonds between the layers, compression is highly
anisotropic. Structures such as periclase, spinel, and garnet, with extensive edge sharing between poly-
hedra in three dimensions, have large bulk moduli similar to those of constituent polyhedra. Bulk moduli
of mantle mineral phases approximate the moduli of component polyhedra because most mantle mineral
structure types have edge sharing in three dimensions. Compression for a given polyhedron does not ap-

pear to depend upon the linkage topology of the structure.

INTRODUCTION

Empirical relationships between bulk modulus and molar
volume were first proposed by Bridgman [1923] and have sub-
sequently developed into important tools for predicting phys-
ical properties of minerals [Anderson and Nafe, 1965; Ander-
son and Anderson, 1970; Anderson, 1972]. Theoretical
arguments for such relationships, based on a simple two-term
model of atomic bonding, may also be applied to subunits of a
crystal structure, for example, cation coordination polyhedra
or cation-anion bonds. Recent advances in high-pressure,
single-crystal X ray crystallography have enabled the re-
searcher to measure structural parameters such as bond dis-
tances in complex crystals as a function of pressure. Hence
bulk modulus-volume systematics may now be tested for
polyhedral elements of oxides and silicates. The resulting rela-
tionships yield information about the geometry of mineral
compression and provide constraints on the nature of the re-
pulsive energy parameter of bonding.

CRYSTAL STRUCTURE DATA

Empirical bulk modulus-volume relationships for cation-
anion coordination groups may be derived from two types of
data, as presented in Table 1. Many simple compounds, in-

" cluding those with NaCl and CaF, structures, have cation-an-

ion separations that are simply related to molar volume. For
these materials, data in Table 1 are easily calculated from the
bulk modulus and molar volume of the compound. The other
data in Table 1 are derived from high-pressure X ray diffrac-
tion experiments on single crystals, from which atomic posi-
tions (and, consequently, bond distances and compres-
sibilities) are determined as a function of pressure.

If we consider only the 38 polyhedra from oxides and sili-
cates (Table 1), a relationship analogous to that proposed by
Hazen and Prewitt [19774] is obtained:

K, (d)*/z.=1.5 + 0.2 Mbar A 1)

where K, is the polyhedral bulk modulus (in megabars), (d) is
the mean cation-anion separation (in angstroms), and z, is the
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cation formal charge. Polyhedral bulk moduli may be calcu-
lated directly from polyhedral volume data as determined
from X ray structure analysis or from linear compressibilities
of cation-anion bonds. If (8) is the mean linear compres-
sibility of a group of cation-anion bonds, then an ‘effective
polyhedral bulk modulus’ may be defined as

K,=1/3(8)

If we use this relationship, (1) may be applied to planar and
linear, as well as polyhedral, cation coordination groups.
Polyhedral data used to derive (1) are illustrated in Figure 1.
The coefficient in (1) was calculated from weighted linear re-
gression of data in Table 1 and was constrained to pass
through the origin. Calculations were performed using both
K, ! and (d)*/z, as independent variables; 7.5 * 0.2 is the av-
erage coefficient. Weighted regression of K, versus z./(d)?
yields a slightly smaller coefficient of 7.3 + 0.2. Bulk moduli
from fully constrained structures, notably NaCl-type oxides,
are known more precisely than other polyhedral bulk moduli;
the coefficient is therefore heavily weighted by these oxides.
Almost all data, however, lie within two estimated standard
deviations of the predicted bulk moduli.

A similar bulk modulus-volume relationship for halides
may also be derived:

K, (d)*/z.=5.6 £ 0.1 Mbar A® )

Equation (1) for oxides and (2) for halides may be combined
with other data on sulfides, selenides, tellurides, phosphides,
arsenides, antimonides, and carbides into a more general bulk
modulus-volume relationship:

K, (d)*/S*.z,=1.5 + 0.2 Mbar A® 3)

where z, is the anion formal charge and $° is an empirical
term for the relative ‘ionicity’ of the bond, defined as 0.50 for
R?* —O bonds in NaCl-type oxides. Equation (3) is similar in
form to (5) of Anderson [1972, p. 278], which is valid for the
bulk properties of several simple compounds. When applied
to bulk mineral properties, however, the constant may vary,
depending on structure type. Furthermore, the appropriate
value of z.z, in many complex compounds is not obvious. In
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TABLE 1. Polyhedral Bulk Moduli, Bond Distances, and Bonding Parameters for a Variety of Compounds

Compound Structure K,? K, (d)®
(Polyhedron) Type (d),'A Mbar z, z, S2 Sz, Reference?
NiO NaCl* 2.084 1.96 (10) 2 2 0.50 8.9 1
MgO NaCl* 2.106 1.61 (5) 2 2 0.50 1.5 2
CoO NaCl* 2.133 1.85(9) 2 2 0.50 9.0 1
FeO NaCl* 2.139 1.53 (8) 2 2 0.50 1.5 3
MnO NaCl* 2222 1.43(7) 2 2 0.50 7.8 1
CaO NaCl* 2.406 1.10 (5) 2 2 0.50 1.7 1
SrO NaCl1* 2.580 091 (5) 2 2 0.50 7.8 4
BaO NaC1* 2.776 0.69 (4) 2 2 0.50 7.4 5
BeO zincite 1.66 25(0) 2 2 0.50 5.7 6
ZnO zincite 1.80 1.4 (3) 2 2 0.50 42 6
U0, fluorite* 2.37 23(1) 4 2 0.50 1.7 7
ThO, fluorite* 242 1.93 (10) 4 2 0.50 6.8 6
AlL,O, corundum 191 24(2) 3 2 0.50 5.6 8
Fe,0; corundum 1.98 23(3) 3 2 0.50 6.0 8
Cr,0, corundum 1.99 23(3) 3 2 0.50 6.1 8
V,0;. corundum 2.01 1.8(3) 3 2 0.50 49 8
. 8i0, rutile’ 1.778 3.2(1.5) 4 2 0.50 44 9
GeO, rutile 1.884 2.7(1.0) 4 2 0.50 44 7
TiO, rutile 1.961 22(1.0) 4 2 0.50 42 7
RuO, rutile 1.968 2.7(1.0) 4 2 0.50 5.1 7
MnO, rutile’ 1.88 2.8(1.0) 4 2 0.50 4.7 9
S$nO, rutile 2.054 2.3(1.0) 4 2 0.50 5.2 7
Sio, quartz® 1.61 >5 4 2 0.50 >53 10
GeO, quartz® 1.73 >4 4 2 0.50 >52 10
Pyrope (Mg-0) garnet 2.27 1.3 (1) 2 2 0.50 7.6 11
Pyrope (Al-O) garnet 1.89 22(5) 3 2 0.50 5.0 11
Pyrope (Si-O) garnet 1.63 3y 4 2 0.50 32 11
Grossular (Ca-O) garnet 2.40 1.15 (13) 2 2 0.50 79 11
Grossular (Al-O) garnet 1.93 2.2 (5) 3 2 0.50 5.3 11
Grossular (Si0) garnet 1.64 3D 4 2 0.50 33 11
Forsterite (Mg-O) olivine 2.12 L.5(3) 2 2 0.50 7.0 12
y Ni,Si0,4 (Ni-O) spinel 2.06 1.53) 2 2 0.50 6.6 13
v Ni,Si0, (Si-0) spinel® 1.66 >2.5 4 2 0.50 >2.9 13
Fassaite (Ca-O) clinopyroxene 2.49 0.85 (20) 2 2 0.50 6.6 14
Phlogopite (K-O) mica 297 0.27 (6) 1 2 0.50 7.1 15
Albite (Na-O) feldspar 2.75 0.32(6) 1 2 0.50 6.7 16
Zircon (Z1-O) zircon 2.20 28(3) 4 2 0.50 15 17
Zircon (Si-0) zircon® 1.61 >2.5 4 2 0.50 >2.6 17
LiF NaCl* 2.023 0.66 (3) 1 1 0.75 7.3 18
NaF NaCl* 2.310 0.45(2) 1 1 0.75 7.4 18
KF NaCl* 2.674 0.293 (15) 1 1 0.75 15 18
RbF NaCI* 2.820 0.273 (14) I 1 0.75 8.2 6
LiCl NaCl* 2.565 0.315 (16) 1 1 0.75 7.0 6
NaCl NaCl* 2.814 0.240 (12) 1 1 0.75 7.1 6
KCl NaCl* 3.146 0.180 (9) 1 1 0.75 1.5 6
RbCl NaCl* 3.291 0.160 (8) 1 1 0.75 7.6 6
LiBr NaCl* 2.750 0.257 (13) 1 1 0.75 7.1 6
NaBr NaCl* 2.989 0.200 (10) 1 1 0.75 7.1 6
KBr NaCl* 3.264 0.152 (8) 1 1 0.75 7.0 6
RbBr NaCl* 3.427 0.138 (7) 1 1 0.75 74 6
Lil NaCl* 3.000 0.188 (9) 1 1 0.75 6.8 6
Nal NaCl* 3.236 0.161 (8) 1 1 0.75 73 6
KI NaCl* 3.533 0.124 (6) 1 1 0.75 73 6
RbI NaCl* 3.671 0.111 (6) 1 1 0.75 73 6
CsCl1 CsCr 3.57 0.182 (9) 1 1 0.75 1.1 18
CsBr CsCl* 371 0.155 (8) 1 1 0.75 10.6 6
Csl CsC1* 3.95 0.129 (6) 1 1 0.75 10.6 6
ThCl CsC1* 3.32 0.236 (12) 1 1 0.75 11.5 6
ThBr CsCI* 343 0.225 (11) 1 1 0.75 12.0 6
CuCl cubic ZnS* 2.34 0.40 (2) 1 1 0.75 6.8 6
Agl cubic ZnS* 2.80 0.243 (12) 1 1 0.75 7.1 3
CaF, fluorite* 236 0.86 (4) 2 1 0.75 7.6 6
BaF, fluorite* 2.68 0.57 (3) 2 1 0.75 7.3 6
PbF, fluorite* 2.57 0.61 (3) 2 1 0.75 6.9 6
StF, fluorite* 251 0.70 (4) 2 1 0.75 7.4 6
MgF, rutile® 1.99 1.0(3) 2 1 0.75 5.3 6
MnF, rutile 2.12 09(Q) 2 1 0.75 5.7 19
TaC NaCn* 2.227 22(2) 4 4 0.2 7.6 6
TiC NaCl* 2.159 1.92) 4 4 0.2 6.0 6
uc NaCl* 2.480 1.6(1) 4 4 0.2 7.6 6
ZiC NaCl* 2.341 1.9(2) 4 4 0.2 7.6 6
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TABLE 1. (continued)

Compound Structure K.’ K, (d)®
(Polyhedron) Type (d),'A Mbar z, z, §? §%.z, Reference®
C diamond* 1.544 5.8(3) 4 4 0.2 6.7 6
C (planar C-C) graphite’ 1.42 593) 4 4 0.2 5.3 20
CaS NaCH 2.845 043 (2) 2 2 04 6.2 3
SrS NaCK* 3.010 0.40 (2) 2 2 04 6.8 3
BaS NaCl* 3.194 035 (2) 2 2 04 7.2 3
PbS NaCl* 2.968 048 (3) 2 2 04 7.8 3
Cds zincite 243 0.61 (6) 2 2 0.4 5.5 6
ZnS zincite 2.24 0.77 (8) 2 2 0.4 54 6
ZnS cubic ZnS* 234 0.76 4) 2 2 0.4 6.1 6
SnS, CdIl, 2.56 1.2(2) 4 2 04 6.3 15
ZnSe cubic ZnS* 245 0.60(3) 2 2 04 5.5 6
CaSe NaCl* 2.960 0.49 (2) 2 2 04 79 3
SrSe NaCH 3.115 043 (2) 2 2 04 8.1 3
BaSe NaCl* 3.300 0.36 2) 2 2 0.4 8.1 3
PbSe NaCl* 3.062 0.34 (2) 2 2 04 6.1 3
CdSe zincite 2.35 0.54 (5) 2 2 0.4 44 6
CaTe NaCl* 3.178 0.42(2) 2 2 0.4 8.4 3
SrTe NaCl* 3.235 0.334 (16) 2 2 04 7.1 3
BaTe NaCH* 3.493 0.305 (15) 2 2 04 8.1 3
PbTe NaCr 3.227 0.41(2) 2 2 04 8.6 6
SnTe NaCr 3.157 0.42 (2) 2 2 04 84 6
CdTe cubic ZnS* 2.81 0.42 (2) 2 2 04 5.9 6
HgTe cubic ZnS* 2.78 0.44 (2) 2 2 0.4 5.9 6
ZnTe cubic ZnS* 2.64 051 (3) 2 2 0.4 59 6
GaSb NaCl* 3.059 0.56 (3) 3 3 0.25 7.1 6
InSb NaCH 3.239 0.47 (2) 3 3 0.25 7.1 6
GaAs NaCl* 2.827 0.75 (4) 3 3 0.25 7.5 6
InAs NaCl* 3.018 0.58 (3) 3 3 0.25 7.1 6
GaP NaCl* 2.736 0.89 (4) 3 3 0.25 8.0 6
InP NaCl* 2.934 0.73 (4) 3 3 0.25 8.1 6
BN (linear B-N) boron nitride’ 1.45 44(2) 3 3 0.2 1.5 20
KCN NaCl* 3.263 0.143 (7) 1 1 0.75 6.6 6

'Error in bond distances at room pressure are <0.005 A.

2 Error in polyhedral bulk moduli are assumed to be +5% for fully constrained structures, unless worse precision is reported. Errors in
polyhedral bulk moduli of unconstrained structures are generally greater than +10%.

3References are 1, Clendenen and Drickamer [1966}; 2 Schreiber and Anderson [1966}; 3, Birch [1966]; 4, Liu and Bassett [1973]; 5 Liu and
Bassett [1972]; 6 Simmons and Wang [1971); 7 Hazen and Finger [1979b]; 8 Sato and Akimoto [1979] and Finger and Hazen [1977); 9, Bassett and
Takahashi [1974]; 10 Jorgensen [1978]; 11, Hazen and Finger [1978b]; 12, Hazen [1976); 13, Finger et al. [1979); 14, Hazen and Finger [1977]; 15,
Hazen and Finger [1978¢]; 16, Hazen and Prewitt [1977b]; 17 Hazen and Finger [1979¢); 18, Yagi [1978]; 19, Hazen et al. [1978]; 20, Lynch and

Drickamer [1966].

“Fully constrained structure in which the polyhedral bulk modulus is identical to the crystal bulk modulus.

SHigh-pressure crystal structures of rutile-type SiO,, MnO,, and MgF, have not been done. Studies of other rutile-type compounds
(references 7 and 19) indicate that polyhedral bulk moduli agree within £30% of crystal bulk moduli.

Tetrahedral bulk moduli of these compounds are greater than the indicated value. No upper limit is reported because net compression of the

bond is comparable to the standard error of the bond distance.

7In graphite and boron nitride, bond compression is constrained to be equal to unit cell compression within the (001) plane.

NaNOQ,, for example, bulk modulus-volume data fit the alkali
halide trend with z.z, = 1; this value does not apply to
NaNO,, however [Hazen and Finger, 1979a]. These difficulties
are not present when (3) is applied to cation coordination
groups. A single constant appears to fit many different struc-
ture types, and the values of z, and z, are unambiguous.
Values of S*> may be calculated from equations such as (1)
and (2) for each type of anion. (Until a better measure of ioni-
city is available, it will be assumed that S? is constant for a
given anion.) If S is defined to be 0.50 for all oxides and sili-
cates, then combining (2) and (3) yields S* for halides of
=0.75. Empirical values of $? determined in this way for other
anions are 0.40 for sulfides, selenides, and tellurides; 0.25 for
phosphides, arsenides, and antimonides; and 0.20 for carbides.
Of the oxide and silicate polyhedra used to construct Figure 1
those that deviate most from the empirical line are tetrahedra,
such as Si in silicates and Zn in ZnO, and octahedrally coordi-
nated vanadium in V,0;, an unusual oxide with metallic
luster and conductivity. All these polyhedra, which are more
compressible than indicated by (3), also have bonding that is

more covaleat than in the other plotted oxide and silicate
polyhedra (i.e., S* may be less than 0.50). Thus deviations
from the line in Figure 1 may provide an approximate mea-
sure of ionicity.

Figure 2 illustrates (3) for polyhedra in more than 100 sub-
stances in 19 different structure types from data in Table 1. It
is significant that a simple empirical relationship successfully
models bond compression in materials with a wide range of
bond character and topology. Of the structures examined,
only CsCl is anomalous with all points falling significantly be-
low the empirical line (Figure 2). This structure, with eight
anions at the corners of each unit cube and a cation at the
cube’s center, is unique in the high degree of face sharing be-
tween adjacent polyhedra and the consequent short cation-
cation separations. In CsCl-type compounds the cation-cation
separation is only 15% longer than cation-anion bonds, in
contrast to the 50-100% greater separation in most other
structures. It is probable therefore that (3), which considers
only the primary coordination group of a cation, is not valid
for structures (for example, perovskite?) in which extensive
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Fig. 1. The bulk modulus-volume relationship for polyhedra in

oxides and silicates. Triangles represent tetrahedra, crosses octahedra,
and circles eight or greater coordination. Error bars represent one esti-
mated standard deviation in polyhedral bulk moduli for selected
polyhedra in silicates. The line is a weighted linear regression fit of all
data, constrained to pass through the origin. This line is largely deter-
mined by polyhedra in fixed-structure oxides for which polyhedral
bulk-modulus errors are small. Almost all points, however, lie within
two estimated standard deviations of predicted bulk moduli.

face sharing results in strong second-nearest neighbor inter-
actions.

RELATIONSHIPS BETWEEN CRYSTAL STRUCTURE
AND COMPRESSION

An important consequence of (3) is that in most structures,
polyhedral bulk moduli are independent of polyhedral link-
ages. Polyhedra in a crystal therefore are not analogous to
mineral grains in a rock, which may experience differing de-
grees of compression depending on the geometry and strength
of surrounding grains. In most mineral structures each poly-
hedron is subjected to the full external pressure (although ani-
sotropic compression, of course, may result).

In all but a few simple structure types, polyhedral bulk
moduli are not simply related to macroscopic bulk moduli;
polyhedral linkages must also be considered. Two cation poly-
hedra may be linked by a shared face, a shared edge, a shared
corner, or Van der Waal’s forces. The type and distribution of
these polyhedral linkages are the most important factors in
determining the bulk modulus of a compound. All oxides and
silicates have a bulk modulus that is less than or equal to that
of the least compressible polyhedron. The degree to which
mineral bulk moduli differ from polyhedral bulk moduli de-
pends on the rigidity of polyhedral linkages.

The most rigid polyhedral linkage is one in which poly-
hedra share faces or edges in three dimensions. If each shared
edge between polyhedra is represented as a line segment in
space, then all such line segments may form a continuous
three-dimensional array. In these fully edge-linked structures
(including halite, corundum, spinels, and garnets) any change
in molar volume must be accompanied by a change in metal-
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oxygen bond distances because of the rigid polyhedral link-
ages. Bulk moduli of these materials, consequently, are large
because they are similar in magnitude to bulk moduli of
metal-oxygen polyhedra. In periclase and corundum, for ex-
ample, bulk moduli of the octahedral sites, the only poly-
hedra, and the bulk mineral are identical. In silicate spinels
and garnets, having both silicate tetrahedra and larger diva-
lent cation polyhedra, the mineral bulk moduli are inter-
mediate between the polyhedral bulk moduli of these Si** and
R?* sites.

In contrast to the materials described above, some struc-
tures such as a quartz, feldspar, and zeolites have primarily
corner-linked polyhedra. In these framework structures, vol-
ume changes may be effected by changes in angles between
tetrahedra, without altering T-O distances. Framework sili-
cates, consequently, have relatively small bulk moduli, even
though individual tetrahedral polyhedra undergo small vol-
ume changes with pressure. The tilting of polyhedra in com-
pression of corner-linked materials may be treated as primar-
ily metal-oxygen-metal bond bending or oxygen-oxygen
compression, as opposed to metal-oxygen compression. It
should be noted, however, that bulk moduli of feldspars and
many zeolites are closely related to the bulk moduli of large
alkali cation polyhedra. If alkali sites are assumed to share
edges with the (Al, Si) tetrahedra, then feldspars and zeolites
may be treated as fully linked by shared edges, and mineral
bulk moduli should be closely approximated by volume
changes of the large cation sites.

In most structures, including pyroxenes, olivines, and rutile-
type compounds, all polyhedra share edges with some adja-
cent polyhedra and link corners with others; a continuous
three-dimensional edge linkage does not obtain. In these ma-
terials, compression is due to a combination of polyhedral
(metal-oxygen) compression and oxygen-oXygen compression,
and the net volume change may be greater than that of com-
ponent polyhedra. The significant differences between poly-
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Fig. 2. The bulk modulus-volume relationship for polyhedra in a
variety of materials. Triangles, crosses, and circles indicate coordina-
tion as in Figure 1.
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hedral linkages of olivines and silicate spinels, for example,
lead to the much smaller bulk moduli of the former.

The effect of linkage rigidity on mineral compression is dra-
matically illustrated by layer minerals. In materials such as
brucite, talc, and chlorite, weak interlayer Van der Waal’s
bonds lead to linear compressibilities between layers many
times greater than within layers [Hazen and Finger, 19784].
Phlogopite mica, KMg,AlSi,0,,(OH),, has fully linked edge-
sharing magnesium octahedra in two dimensions within layers
but weak K-O bonds between layers. The intralayer linear
compressibility (2.2 X 107* kbar™') is identical with that of
periclase, MgO, which is fully linked in three dimensions. The
interlayer linear compression of phlogopite, however, is more
than 5 times greater, owing to the large compressibility of the
K-O bonds.

Anisotropic compression of many other minerals is also due
in large part to nonuniform distribution of polyhedral link-
ages. In rutile-type compounds, for example, close approach
of metal cations across shared edges leads to the low compres-
sibility of ¢ relative to a [Hazen et al., 1978]. There is thus a
close relationship between the type and distribution of poly-
hedral linkages and the bulk moduli of oxygen-based com-
pounds.

PREDICTION OF MACROSCOPIC BULK MODULI

Compression of oxygen-based compounds is due to both
polyhedral compression, which appears to be a fundamental
property independent of structure, and polyhedral tilting,
which is dependent on the structural linkages of polyhedra. In
order to predict the bulk modulus of a compound it is neces-
sary to know the bulk moduli of the component polyhedra
and the nature of the polyhedral linkages. For many crustal
minerals, linkages are complex, and accurate prediction of
bulk moduli is not yet possible. (Recent measurements of
metal-oxygen-metal bending force constants may lead to pre-
dictions of polyhedral tilting magnitudes (G. V. Gibbs, per-
sonal communications, 1978).) On the other hand, dense
oxide and silicate phases that are predicted to exist in the tran-
sition zone and lower mantle have full three-dimensional edge
sharing. Prediction of the bulk moduli of these mantle phases,
even if details of atomic arrangements are unknown, may thus
be greatly simplified.

CONCLUSIONS

The bulk modulus-volume relationship for cation coordi-
nation polyhedra is a useful empirical equation for predicting
the geometry of compression in many solids. The relationship
may also be used to predict approximate macroscopic bulk
moduli in some fully linked structures, although uncertainties
in the magnitudes of polyhedral tilting and in the ionicity co-
efficients of different bonds limit this application. Equation (3)
therefore is not intended as a substitute for the successful bulk
modulus-volume relationships of Anderson [1972] and others.

Equation (3) places important constraints on theoretical
models of compression and bonding [see Anderson, 1972,
equation (3)], although this relationship is not itself an ex-
planation of cation-anion compression. The empirical bulk
modulus-volume relationship for polyhedra therefore should
be considered in the formulation of models of interatomic
forces, as well as in the description and prediction of mineral
compression.
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