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ABSTRACT. Structures and properties of rock-forming minerals
can be modeled by considering cation coordination polyhedra as basic
building blocks. The “polyhedral a]])lproach” incorporates two
assumptions: (1) each type of cation polyhedron has its own character-
istic properties (for example, size, shaPe, thermal expanswlty, and
fictive thermochemical parameters) which are invariant from struc-
ture to structure, and (2§)bulk crystal properties can be derived from
Eolyhedral properties if appropriate summation procedures are
nown. In spite of the fact that both these assumptions are, at best,
only first apgrommatlons, the polyhedral approach has proven itself
to be a valuable method for estimating some hard-to-measure mineral
properties. Furthermore, If)redlctlons of polyhedral modeling provide
a convenient “yardstick” for evaluating observed mineral properties
and identifying anomalous data.

I. INTRODUCTION

Most rock-forming minerals are far too complex individually, let
alone in multi-species association, to calculate physical properties from
existing first principle models. Mineralogists and petrologists have thus
resorted to experimental measurements coupled with a variety of
simplitying empirical methods in their efforts to describe the structures
and properties of natural crystals. Examples of these empirical relations
include such well-known trends as ““Vegard’s Law,” which relates molar
volume to ionic radius (Vegard and Dale, 1928); the rule of Gladstone
and Dale (1864) as applied by Larsen and Berman (1934), who predicted
mean refractive index from weight percentage of oxides; and Birch’s
Law (Birch, 1960; 1961), which correlates mineral density and mean
atomic weight with compressional wave velocity. Empirical relationships
of this kind are usually introduced as useful tools in the prediction of
properties that may be difficult to obtain experimentally or theoretical-
ly. Birch’s Law and related models, for example, have proven especially
valuable in constraining compositional models of the Earth’s mantle. Of
equal importance, however, are the insights that empirical relationships
can provide on the origin of mineral structures and properties. In this
regard, empirical relationships should be viewed as valuable “‘yard-
sticks”” against which the behavior of minerals may be compared, rather
than rigid “laws” to which minerals are expected to conform. The
success of an empirical model, therefore, lies as much in its ability to
identify interesting anomalies, as in its success in predicting mineral
structures or properties. :
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Pauling’s Rules and the Significance of the Polyhedron

Perhaps the best known empirical approach to modeling the
complexities of mineral structures is that of Pauling (1929; 1960), who
systematized aspects of mineral-like structures in a set of “‘rules’” under
the heading, ““The principles determining the structure of complex
ionic crystals.” Pauling’s first rule states the importance of cation
coordination polyhedra, which are formed by anions about each cation
in the structure; cation-anion distance is equal to the sum of ionic radii,
and coordination number is often related to the radius ratio. This first
rule is a recasting of Goldschmidt’s rule that the number of anions
surrounding a cation tends to be as large as possible. The second rule is a
statement of ionic charge balance; the sum of valency bonds (cation
charge divided by coordination number) to each anion is approximately
equal to the valence of that anion. Pauling’s third and fourth rules state
that polyhedra of small, highly-charged cations (such as Si‘”) tend not to
share edges or faces; these polyhedra will usually lie as far apart as
possible. Finally, the fifth rule simplifies the structural analysis of
chemically complex phases by noting that “the number of essentially
different kinds of constituents in a crystal tends to be small.” In
summary, Pauling’s rules systematize the nature of nearest-neighbor
interactions in mineral structures. These principles thus have been
instrumental in the solution of many complex crystal structures.

Pauling’s presentation and much of the subsequent development of
his ideas are couched in the terminology of an ionic model. Cations and
anions, formal charge, and electrostatic forces are integral to the
development. Several authors have noted, however, that even materials
that are quite covalent obey rules “isomorphous to those applying in
ionic crystals” (Burdett and McLarnan, 1984; see also Bent, 1968). It
would be a mistake, therefore, to apply Pauling’s methodology exclu-
sively to ionic crystals, just as it would be erroneous to cite conformity
with these rules as evidence for some degree of ionic character.

Pauling’s rules are an explicit statement of the importance of
nearest-neighbor bonding in determining the structure of mineral-like
compounds. It is interesting to note that Pauling’s description focuses on
the role of cation coordination polyhedra rather than on clusters of
cations about anions. While the second rule relating to charge balance
applies equally well to positive or negative ions, it is the cations
coordinated to regular anion clusters that differ little from mineral
structure to structure. Anion coordination groups, on the other hand,
show much greater variation in different crystal structures.

There are at least two reasons for this lack of uniformity in anion
clusters. First, oxygen is the only important anion in most rock-forming
minerals, whereas there are several important cations. Cations are
surrounded uniformly by oxygens in most minerals, whereas anions
have several different cation nearest neighbors. This situation might
well be reversed in a2 world of one dominant cation (magnesium) and
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several common anions (equal amounts of coexisting oxygen, sulfur,
selenium, fluorine, chlorine, and bromine). Our focus on cation polyhe-
dra, therefore, may be largely an artifact of the mineralogical data base.
Second, cations tend to demonstrate a much wider range of valence.
Cations of valence one through five are common in minerals, whereas
anions of valence one or two predominate. One might, therefore, expect
more uniformity in the anion arrays than the cation arrays in most
crystal structures. In developing empirical models of mineral structures
and properties, it is logical to concentrate on those aspects of atomic
arrangements—cation coordination polyhedra—that recur often.

Molecular Mimicry in Minerals

Pauling’s rules, which are based on the observed structures of
crystals, first elucidated the significance of cation coordination polyhe-
dra. Some of the most compelling evidence in support of polyhedral
modeling, however, has come from studies of isolated molecules. A
variety of investigations, both experimental and theoretical, have shown
that small one- or two-polyhedral clusters of oxygen surrounding silicon,
boron, magnesium, or other cation are almost identical topologically to
those units in mineral structures. This phenomenon, termed “‘molecular
mimicry” by Gibbs and coworkers (Zhang and others, 1985; Gibbs and
Boisen, 1986; Gibbs, Finger, and Boisen, 1987), is demonstrated by the
conformation of such silicate-related molecules as H,SiO,—monosilicic
acid and HgSi,O,—disilicic acid (Newton, O’Keeffe, and Gibbs, 1980).
These molecules display bond distances and angles almost identical to
those in silicate minerals (O’Keeffe, Domenges, and Gibbs, 1985).

Molecular mimicry has proven especially important in the applica-
tion of ab initic molecular orbital calculations to minerals. Most molecu-
lar orbital computations have been limited by computer speed and
memory to problems of no more than about 200 basis functions
(generally fewer than a dozen nonhydrogen atoms). Early efforts to
model silicates or borates were by necessity restricted to even smaller
clusters. These studies were often criticized on the basis of an assumed
dissimilarity of isolated molecules, such as HgSi;O;, compared to crystal-
line solids with continuous, periodic linkages of atoms. Nevertheless, as
molecular orbital studies on minerals have increased in number and
sophistication, it has become evident that the conformational details of
polyhedral molecules generated by ab initio molecular orbital proce-
dures are remarkably faithful to crystalline subunits.

The successes of molecular orbital modelling are many. The bond
distances, coordination numbers, and bond length-bond strength sys-
tematics of cation-anion clusters have been reproduced (Gibbs, Finger,
and Boisen, 1987). The sympathetic variation of bond length with
T-O-T bond angle in tetrahedral framework structures has been mod-
eled (Geisinger, Gibbs, and Navrotsky, 1985). And, perhaps most
significantly, electron density distributions virtually identical to those
determined experimentally have been calculated for portions of silicate
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structures (Gibbs and Boisen, 1986). One important conclusion of these
and other molecular orbital calculations is that polyhedral electron
densities—and by implication polyhedral configuration and proper-
ties—are relatively independent of long-range polyhedral interactions,
at least as long as approximate local charge balance is maintained.

The Polyhedral Approach

The polyhedral approach is a logical extension of Pauling’s rules
and the observations of molecular mimicry. The objective is to model
various physical properties of crystals on the basis of observed or
assumed properties of constituent cation coordination polyhedra. The
two fundamental assumptions of this “‘polyhedral approach’ are:

1. Each different type of cation coordination polyhedron (SiO,
tetrahedron or MgOg octahedron) has properties that are
invariant from structure to structure. These properties may be
directly measurable (polyhedral volume or compressibility) or
they may be fictive (polyhedral heat capacity or elastic modulii);
and,

2. Properties of minerals may be derived from polyhedral proper-
ties if appropriate summation procedures can be identified.

The most obvious flaw in this polyhedral modeling scheme is the
total neglect of crystal energy contributions by second-nearest neighbor
cation-cation interactions (O’Keeffe and Hyde, 1981) and all longer-
range interactions. The “properties” of each type of polyhedron are
modeled as constants from structure to structure, regardless of the ways
in which they are interconnected. Many attributes of crystals—includ-
ing all anisotropic characteristics—cannot be derived from the polyhe-
dral approach without resorting to the additional information of the
type and orientation of polyhedral linkages. Considerable effort in
polyhedral modeling, therefore, has been directed toward quantifying
polyhedral linkage schemes and their relationship to structure.

The polyhedral approach has proven useful in predicting struc-
tural details, physical properties, and phase stability of minerals, in spite
of the fact that both of its two assumptions are, at best, only first
approximations and in some instances are demonstrably false. The
objective of this paper is to review recent experimental and theoretical
results that reveal some of the useful applications, as well as the
significant limitations, of the polyhedral approach. Parts II and III
review the geometrical characteristics of polyhedra and their linkages,
respectively. Part IV delineates polyhedral properties, both observed
and fictive, and their use in modeling crystals.

II. POLYHEDRAL PARAMETERS AND THEIR VARIATIONS

Polyhedral Parameters
Composition and formal charge.—Cation coordination polyhedra are
described by several parameters: the cation species and its formal
charge, the anion species and its formal charge, the coordination
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number, and the geometrical form. In many compounds these parame-
ters are unambiguous. In MgO, for example, the Mg®* cation is
surrounded by six O?~ anions in a regular octahedron, denoted V'Mg?*.
Similarly, in forsterite, Mg,SiO, the structure consists of two nonequiv-
alent Y'Mg?* cations and silicon in tetrahedral coordination ('VSi**).
Most fully-ordered, stoichiometric oxides and silicates conform to this
ideal situation.

In compounds with more complex chemistry, in particular when
cation nonstoichiometry or disorder occurs, the polyhedral parameters
are taken as the average over the entire crystal for each nonequivalent
polyhedron. Consider the example of a disordered intermediate plagio-
clase with composition (NaCa) (Al3Si;)O,6. The average cation species of
the large alkali site 18 (Nag sCag ) with a formal charge of 1.5; that of the
tetrahedral sites is (Alg375Sigg95) With a formal charge of 3.625. In
partially ordered intermediate plagioclase the description of average
polyhedral parameters for each nonequivalent polyhedron becomes
much more complicated: Cation occupancy information for each crystal-
lographically distinct polyhedron is required.

The anion species is O~ in all examples considered in this paper;
extension of the polyhedral approach to halides is straightforward, but
consideration of sulfides, nitrides, and other compounds with predomi-
nantly covalent bonding is not generally possible unless clearly identifi-
able polyhedral clusters are present. Thus, the approach works for PbS
in the galena (rock salt) structure but is not easily applied to FeS, in the
pyrite structure, which does not have a simple polyhedral topology.

Coordination number.—The concept of cation coordination num-
ber, defined as the number of anions associated with a given cation,
predates Pauling by more than a decade (Pfeiffer, 1916). In most
stoichiometric oxides and silicates the coordination number is an integer
that is obvious by inspection. The exact coordination number of large
cation sites, however, especially those with more than 6 coordinating
anions, may be ambiguous. The difficulty of assigning an integral
coordination number is evident by considering continuous changes that
some structures undergo with varying temperature, pressure, or compo-
sition. Interlayer alkali cations of micas are associated with 12 oxygen
anions, which in most species separate into 6 shorter (“‘inner’”) or 6
longer (“‘outer’’) bond distances. The difference between these two sets
of alkali-oxygen distances is often referred to as the interlayer site A. In
many micas, such as taeniolite (KLiMg,Si,0,¢F,; Toraya and others,
1977) and annite (approx KFe;AlSi;O,((OH),; Hazen and Burnham,
1973), the inner and outer distances are nearly equal, so A is zero, and
interlayer coordination is 12. In other micas, however, A may be as large
as 1.0 A. In synthetic KMg;AlGe;O,4F, (Toraya and others, 1978), for
example, the 6 shorter K-O distances are 2.8 A while the 6 longer K-O
distances are 3.6 A; potassium in this mica might justifiably be assigned a
coordination number of 6. Continuous changes in mica composition,
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temperature, or pressure lead to continuous variations in A. For exam-
ple, a decrease in the size of the alkali site relative to the other mica
layers (either by substitution of Na for K, or by an increase in pressure,
or by a decrease in temperature), will result in an increase in A. Since all
values of A from 0.0 to about 1.0 are possible, it follows that all values of
coordination number from 12 to 6 are also possible; there exists no
straightforward method to calculate the coordination number (integral
or otherwise) of the alkali cation polyhedron. A somewhat arbitrary
expression such as:

p=6[1+@1-48 (1)

might be applied to indicate a relative scale of coordination number, p,
for the micas, but this relation is not general. Similar ambiguities in
coordination number occur in the alkali feldspars (Prewitt, Sueno, and
Papike, 1976), in sodium zirconium silico-phosphates (Na, , ,Zro(Si,P3_x)
O,5; Hong, 1976), noncubic perovskites such as sodium niobate (Na-
NbOs; Megaw, 1974), and many other compounds with large, irregular
alkali or alkaline earth sites of variable composition and noncubic
symmetry.

There have been several attempts to quantify “effective coordina-
tion number” in a more rigorous way. Brunner and Schwarzenbach
(1971) defined an effective coordination number, KZ (for koordination-
zahl), on the basis of histograms of distances from a central atom to
surrounding atoms. In most structures a “‘gap” in this histogram divides
coordinating atoms from noncoordinating atoms. Hoppe (1979) devised
a more complex, though somewhat ad hoc, procedure for calculating
effective coordination number, ECoN, on the basis of deviations of
observed cation-anion and anion-anion bond distances from values
expected from the ionic radii of Shannon (1976). Brown and Shannon
(1973), alternatively, assigned varying bond strengths to different
cation-anion pairs on the basis of the bond lengths. Each of these
approaches recognizes the nonideal nature of cation coordination clus-
ters that occur in many compounds.

Polyhedral volume.—Polyhedral volume is defined as the space
enclosed by constructing planes through each set of three adjacent
coordinating anions about a given cation. The only required data are the
unit-cell parameters and the atomic coordinates of the anions. A
computer program to calculate polyhedral volumes has been described
by Swanson and Peterson (1980), and a complete listing of program
VOLCAL by L. W. Finger to calculate polyhedral volumes and distor-
tion indices is provided by Hazen and Finger (1982, app. 3). T g)ical
polyhedral volumes for common cation-anion clusters are 2.2 for
SiO, tetrahedra, 9 A® for AlO; octahedra, and 12.5 A® for MgOs
octahedra. The largest cation coordination polyhedra in common rock-
forming minerals are the alkali positions in feldspars and feldspathoids,
with volumes in excess of 20 A3.
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Polyhedral distortions.— An ideal, or “‘regular,” cation polyhedron
is defined as a cluster with all anion-anion edges of equal length, and all
adjacent anion-cation-anion angles equal. Examples of regular cation
polyhedra in crystals are the LiO, tetrahedron in the antifluorite-type
Li,0, the MgO, octahedron in NaCl-type MgO, the CsClg cube in CsCl,
and the CaO,,; dodecahedron in cubic perovskite-type CaTiOs. Ideal
planar cation “polyhedra,” such as the CO; groups of carbonate or
square-planar groups in some platinum and iron compounds, are also
conveniently included in this group. All these atom clusters are charac-
terized by just one cation-anion distance and one anion-cation-anion
angle for adjacent anions.

Most cation polyhedra deviate slightly from shape ideality, and
considerable effort has been devoted to the quantification of these
distortions. Quadratic elongation and bond angle variance (Robinson,
Gibbs, and Ribbe, 1971) are two commonly cited distortion parameters.
Quadratic elongation, {vy), is defined as:

(v) =2 [(li/10)2/n] 2)

where 1, is the center-to-vertex distance of a regular polyhedron of the
same volume, n is the coordination number of the central atom, and 1, is
the distance from the central atom to the ith coordinating atom. A
regular polyhedron has a quadratic elongation of 1, whereas distorted
polyhedra have values greater than 1. Bond angle variance, %, is defined
as:

o =2 [(6: - 60*/(n — 1)] (3)

where 6, is the ideal bond angle for a regular polyhedron (for example,
90° for an octahedron or 109.47° for a tetrahedron), n is the coordina-
tion number, and §; is the ith adjacent bond angle from outer, to central,
to outer atoms. Angle variance is zero for a regular polyhedron and
positive for a distorted polyhedron. Robinson, Gibbs, and Ribbe (1971)
noted a good correlation exists between quadratic elongation and bond
angle variance, and Fleet (1976) demonstrated that this correlation is
exact for several types of symmetric polyhedral distortions.

Dollase (1974) presented an alternative procedure for quantifying
polyhedral distortions. His method is based on a comparison of the
distorted polyhedron with a reference polyhedron of similar volume.
The reference polyhedron may be regular, or it may possess lower
symmetry (for example, a trigonally-distorted octahedron). The distor-
tion parameter is a single number that represents the mean deviation of
observed and reference polyhedral anion positions. The Dollase
approach is particularly useful in quantifying polyhedral deviations
from a particular symmetry, or in identifying similarities among like
polyhedra in different structures.
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On the Variability of Polyhedral Geometry

In reviewing polyhedral parameters it is useful to consider the
range of size, shape, and distortion of some common polyhedra. Silicate
tetrahedra display little variation from structure to structure. Average
silicon-oxygen distance ranges from about 1.61 A in framework silicates
to 1.65 A in orthosilicates, with corresponding polyhedral volumes of
about 2.10 to 2.25 A®. Oxygen-silicon-oxygen intratetrahedral angles
rarely deviate by more than 10° from the ideal 109.47° value. The
longest and shortest oxygen-oxygen edges of a SiO, tetrahedron typi-
cally differ by no more than 0.15 A or about +5 percent from the 2.7 A
average value.

Aluminum octahedra are more variable in geometry than silicon
tetrahedra, with average Al-O distances ranging from less than 1.9 A to
almost 2.0 A, corresponding to octahedral volumes from 8.8 to 6.6 A®.
Intraoctahedral O-Al-O angles may deviate by as much as 15° from the
ideal 90° value. Longest and shortest O-O edges differ by up to 0.3 A or
about =10 percent from the 2.7 A average.

Octahedra of divalent magnesium are significantly more variable
in geometry than those of trivalent aluminum (fig. 1). Average Mg-O
distances range from 2.05 to 2.15 A corresponding to polyhedral
volumes of about 12 to 13 A%. Oxygen-magnesium-oxygen bond angles
sometimes deviate by more than 20° from the regular octahedral value
of 90°. Distorted octahedra with O-O edges that differ by up to 0.4 A
(about +15 percent) from the 2.9 A average are well known in miner-
als.

The BeO, tetrahedra, like MgO, octahedra, are much more
variable than tri- and tetravalent cation polyhedra (fig. 2). Average
tetrahedral Be-O distances are near 1.65 A, but tetrahedral volumes
range from 2.0 to 2.3 A%. In most BeO, tetrahedra the O-Be-O angles
are within a few degrees of the ideal 109.47°, but in beryl these angles
range from 91° to 131°.

Oxygen-oxygen edge lengths in beryl, similarly, show a large
variation from 2.3 t0 3.0 A, compared to an average 2.7 A value.

In summary, polyhedra of a given type may display significant
variations in polyhedral geometry from structure to structure. Varia-
tions of +2 percent in average bond distance, +4 percent in polyhedral
volume, and =15 percent in O-O edge lengths are typical of divalent
polyhedra in common minerals. In general, cations with greater cation
valence display less variation from structure to structure. Nevertheless,
it is evident that the first assumption of the polyhedral approach—that
of invariance of such polyhedral properties as size and shape—is at best
only a first-order approximation.

III, POLYHEDRAL LINKAGES

A mineral structure may be characterized by the types of its
coordination polyhedra and the manner in which those polyhedra are
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MAGNESIUM OCTAHEDRA

MgO KM93A|Si3010(0H)2
Mg—O = 2.106 A Mg—O =2.036 A
Vol = 12.4 A3 Vol = 12.0 A3

Mg,SiO4 Mg5SiOg4
Mg—O0 =2.101 A Mg—0 =2.126 A
Vol = 12.2 A3 Vol = 12.8 A3

Fig. 1. The variability of MgOyg octahedra in oxides and silicates.

linked together. Two polyhedra may be joined by a shared face (three or
more common anions), a shared edge (two common anions), a shared
corner (one common anion), or by intermolecular forces (no shared
elements). For the purposes of polyhedral modeling, it is necessary to
identify the types and distribution of polyhedral linkages throughout a
structure; therefore, a classification of mineral structures on the basis of
polyhedral linkages is now being developed. A complete description of
this classification scheme is beyond the scope of the present review, but a
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2.70 2.77

Be—O = 1.643 A
Vol =2.28 A3

2.79 2.74
BeAlISiO 4(OH) Be4Siz07(0H)y
Be—O = 1.643 A Be-0=1.641A
Vol = 2.26 A3 Vol = 2.26 A3

/\ ~
A g S
v & “s¢
278 3.02
Be—0O = 1.640 A Be—O = 1.657 A
Vol =2.19 A3 Vol = 2.04 A3

Fig. 2. The variability of BeO, tetrahedra.

brief summary will elucidate the rationale and applications of the
approach.

The basis of the classification is the distribution of rigid versus
deformable polyhedral linkages in the structure. In this context a rigid
linkage is defined as a cluster of atoms that tends to undergo little
deformation with changes in temperature, pressure, or composition of
adjacent polyhedra. Thus, the shared face between AlOg octahedra in
corundum is called a rigid polyhedral linkage because the three oxygens
that define the shared face retain their relative positions. The shared
corner between two SiQ, tetrahedra in a-quartz, on the other hand, is
considered to be a very deformable linkage, because the three atoms
that define the Si—O-Si angle undergo significant variations in relative
positions with changes in temperature and pressure. The rationale for
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classifying minerals on the basis of these rigid versus compliant linkages
is that many physical properties, and in particular the anisotropy of
these properties, are directly related to the rigidity of linkages. Of
particular interest in the earth sciences are the close correlations
between polyhedral linkage rigidity and mineral elasticity, thermal
expansivity, and thermochemical systematics. These relations are exam-
ined in more detail in section IV below.

The three most rigid polyhedral configurations are: (1) shared
faces between two polyhedra in which the valences of the two cations
sum to +3 or more, (2) shared edges between two polyhedra with the
valences of the two cations summing to +4 or more, and (3) rings of
corner-sharing polyhedra with cation-anion-cation angles that are
restricted. The relative rigidity of shared faces and edges 1s qualitatively
proportional to the sum of the valences of the two cations; thus the
AP*-APP* shared faces in corundum (sum +6) are more rigid than
Mg?*-Mg?* shared faces in pyrope (sum +4). Similarly, the Si**-Mg**
shared edges in forsterite are more rigid than the Mg?*-Mg?* shared
edges in the same structure. Restricted angles may arise from 3-member
rings of corner-linked polyhedra, as observed in bertrandite, bromellite,
and phenakite (Be-Be-Be or Be-Be-Si tetrahedral rings, with T-O-T
angles constrained to be close to 120°). Alternatively, in some high-
symmetry compounds certain angles are fixed. This behavior is exempli-
fied by the 6-fold symmetry of the 6-member SizO,; rings of beryl and
high-cordierite (Si-O-Si angles constrained to about 168°). All other
types of polyhedral linkages are more flexible. Shared edges or faces
between alkali cations, for example, are much more deformable than
those between 2* or 3" cation polyhedra. Corner-linked polyhedra, in
the absence of other restrictions, are more flexible than polyhedra that
share edges or faces. And, of course, intermolecular bonds are many
times weaker than cation-anion interactions.

It is particularly instructive to visualize mineral structures by
considering the three-dimensional distribution of points, segments,
triangles, or rings that represent shared corners, shared edges, shared
faces, or restricted rings. Many common rock-forming minerals are
characterized by continuous three-dimensional patterns of shared faces,
shared edges, or rigid cation-anion-cation angles. Rock salt, garnet,
scheelite, and spinel are examples of structure types with this rigid
linkage of polyhedral elements. Corner-linked structures of high sym-
metry such as §-quartz, @-cristobalite, and cubic perovskites are also
characterized by such a rigid three-dimensional network of linkages,
because of constraints on cation—anion—cation angles. In contrast,
flexible framework structures, including a-quartz, alkali feldspars, low-
symmetry alkali perovskites, and low-symmetry zeolites, have no rigid
interpolyhedral links. Angles between polyhedra vary significantly with
changes in temperature, pressure, or alkali composition. Most crustal
minerals are intermediate in character, with some rigid and some
flexible linkages. In alkali micas, for example, octahedral edge-sharing
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leads to a continuous rigid network within each octahedral layer, in
contrast to the more flexible linkages in the alkali and silicon tetrahedral
layers.

! This view of crystals—in terms of the rigidity of their shared
polyhedral elements—reveals a significant fact: The anisotropic behav-
ior of chain, sheet, or framework silicates may be considered to be a
consequence of the distribution of rigid shared edges and.faces between
polyhedra adjacent to tetrahedral chains, layers, and so on, rather than
the arrangement of the silicon tetrahedra themselves. Indeed, the
distribution of edge- and face-sharing octahedra is the basis for at least
one magnetic classification system of minerals (Coey and Ghose, 1986).
As the close relationships between polyhedral properties and mineral
behavior are explored it will be necessary to keep these distinctive
patterns of polyhedral linkages in mind.

IV. POLYHEDRAL PROPERTIES AND MINERAL BEHAVIOR

Pressure-Temperature-Volume Equations of State

Polyhedral equations of state.—Perhaps the most intensively studied
polyhedral property has been the variation of polyhedral volume with
temperature and pressure. The volume of a cation polyhedron may be
derived from crystal structure data; therefore, high-pressure and high-
temperature crystal structure studies contain information on the pres-
sure-temperature-volume (P-T-V) equations-of-state of each constitu-
ent polyhedron.

An important conclusion of these nonambient crystallographic
studies is that thermal expansion and compressibility are independent of
structure for many types of cation polyhedra. In the case of MgQOg
octahedron compressibility, for example, polyhedra in periclase, diop-
side, enstatite, forsterite, monticellite, and phlogopite all have volume
compressibilities of about 0.67 + 0.03 Mbar™' (fig. 3). Similarly, BeO,
tetrahedra in bertrandite, beryl, bromellite, chrysoberyl, euclase, and
phenakite all have volume compressibilities consistent with 0.47 Mbar™!
(Hazen and Au, 1985, 1986). The volume thermal expansion of MgO
octahedra (Hazen and Finger, 1982; fig. 6-4) is approx 4.0 + 0.4 x 107°
°C™! between 0° and 1000° C for each of seven different oxides and
silicates. The similarity of thermal expansion behavior of different
beryllium tetrahedra is particularly striking (fig. 4). Tetrahedra in beryl,
bromellite, chrysoberyl, and phenakite (with two nonequivalent tetrahe-
dra) all have the same slope and curvature. An average expansion
coefficient of about 2.5 + 0.3 x 107° C™! is observed between 0° and
1000°C. It is possible, therefore, to assign a single coefficient of thermal
expansion and compressibility to each of these cation polyhedra. The
first assumption of the polyhedral approach—that of the constancy of
polyhedral properties—appears to obtain for many cations.

Two simple empirical equations relate these observed constant
coefficients of polyhedral thermal expansion and compressibility to
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MAGNESIUM OCTAHEDRAL COMPRESSION

[ l l l l l l
X
212 |- Monticellite
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Fig. 3. Average Mg-O bond distances A) in magnesium-oxygen octahedra versus
ressure (kb) for monticellite (Sharp, Hazen, and Fin er, 1987), forsterite (Kudoh and
akeuchi, 1985), diopside (Levien, Prewitt, and Wei ner, 1980), enstatite (Ralph and

Ghose, 1980), phlogopite (Hazen and Finger, 1978a), and MgO.

polyhedral bonding parameters (Hazen and Finger, 1982). Polyhedral
thermal expansion is inversely proportional to Pauling bond strength:

Polyhedral ag00 ~ 1.25 + 0.12 (n/2) x 1075 °C-", 4)

where a;oq0 is the average polyhedral volume expansion between 25°
and 1000°C, n is the cation coordination number, and z is the cation
valence. Polyhedral volume compressibility, @, is proportional to aver-
age cation-anion distance cubed, 42, and inversely proportional to cation
valence, z:

Polyhedral 8 ~ 0.1383 + 0.015 (d®/z) Mbar™, (5)
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These two simple empirical relations are sufficient to predict polyhedral
volumes as a function of temperature and pressure in most minerals. In a
slight modification, these equations (4) and (5) have been extended to
include polyhedra in halides, sulfides, and other materials (Hazen and
Finger, 1982).

It is instructive to review the two types of polyhedra that deviate
most from eq (5). Eight-coordinated polyhedra in the cesium chloride
type structure are much less compressible than predicted. The cesium
chloride structure is unique among the many structures examined in
that all polyhedra (simple cubes) share all faces with adjacent polyhedra.
As a consequence, second-nearest neighbor cation-cation distances in
CsCl-type compounds are just 15 percent longer than the cation-anion
distances. Strong second-nearest neighbor interactions appear to cause
the relative incompressibility of these compounds. Conversely, the great
majority of compounds that conform to the empirical polyhedral com-
pressibility relation appear to be little affected by such second-nearest
neighbor effects.

On the other hand, several types of cation-oxygen polyhedra tend
to be significantly more compressible than predicted by eq (5). Tetrahe-
dral Zn in ZnO, tetrahedral Si in many silicates, and octahedral V in
V403, for example, are all 50 percent more compressible than expected.
Zn-O and Si-O bonds are often described as “more covalent” than
divalent and alkali cation-oxygen bonds, whereas V,0; is an unusual
oxide with metallic luster and conductivity. Thus, positive deviations
from the empirical trend of eq (5) may be related to some aspect of bond
character.

Important objections to the concept of invariant polyhedral ther-
mal expansion and compressibility have been voiced by Liebermann
(personal commun.). He argues that a given type of polyhedron in
different structures may experience different effective local pressures as a
result of pressure shielding or intensification by surrounding polyhedral
units. This situation certainly occurs, for example, in the case of cubic
Pm3m perovskites such as high-temperature KWO;, NaWQ;, and NaN-
bOs, in which the rigid framework of tungsten or niobium octahedra
precludes significant compression or expansion of the alkali 12-coordi-
nated polyhedron. Similar situations obtain in high-symmetry forms of
cordierite, zeolites, eucryptite, and other minerals with rigid corner-
linked frameworks of relatively incompressible polyhedra which define
cavities containing large interstitial cation. The concepts of polyhedral
thermal expansion and compressibility are thus called into question for
these special types of structures. However, thermal expansion and
compressibility data for the great majority of alkali and divalent cation
polyhedra are relatively constant for a variety of structures and thus do
not necessarily support Liebermann’s view.

In the case of SiO, tetrahedra, however, there is mounting
evidence for significant variation in compressibility in different struc-
tures. The empirical expression of Hazen and Finger (1982) predicts a
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silicon tetrahedral compressibility of about 0.15 Mbar~!, a value that
does conform to the least compressible silicon tetrahedra measured thus
far. However, a considerable range of tetrahedral compressibilities have
been reported, from about 0.15 Mbar~! in quartz (Levien, Prewitt, and
Weidner, 1980) to approx 0.25 Mbar~!in diopside (Levien and Prewitt,
1981) to more than 0.50 Mbar~! in forsterite (Kudoh and Takeuchi,
1985). A general trend seems to be emerging; tetrahedra in frameworks
with flexible T-O-T angles are less compressible than tetrahedra in
flexible chains, which appear, on average, to be less compressible than
isolated tetrahedra. It is possible that these trends are related to the
systematic variation of Si-O distances versus T-O-T angle documented
by Gibbs and coworkers (Gibbs, 1982; Geisinger, Gibbs, and Navrotsky,
1985) and may bear a close relationship to the “effective local pressure”
proposed by Liebermann. Liebermann’s hypothesis may thus have
validity and should be the subject of further systematic study.

Mineral equations of state.— A knowledge of polyhedral equations of
state is necessary, but not sufficient, to derive mineral equations of state.
There are not, as yet, any simple procedures to predict mineral thermal
expansion or compressibility from those of the constituent polyhedra. It
is possible, however, to classify expansion and compression behavior on
the basis of the polyhedral linkage systematics described in section II1.

Hazen and Finger (1985) identified three mechanisms by which
crystals expand or compress with changing temperature or pressure:
variations in polyhedral volume, bending of interpolyhedral angles, and
changes in intermolecular separations. Another possible compression
mechanism—that of polyhedral distortion without appreciable cation-
anion distance changes (in other words changes in anion—cation-anion
bond angles)—does not appear to be a significant factor in the thermal
expansion or compression of minerals.

Intermolecular distances increase and decrease at least an order of
magnitude more than cation-anion bonds. In any molecular compound,
including such layer minerals as graphite and talc as well as virtually all
organic crystals, intermolecular changes dominate the P-T-V systemat-
ics of the crystal. Expansion or compression parallel to those bonds,
furthermore, is always many times greater than in planes with no
intermolecular bonding. Thus, layered compounds with intermolecular
bonding have one highly variable unit-cell length, whereas crystals of
chain-like molecules have two such directions.

Flexible cation-anion-cation angles, which are commonly asso-
ciated with shared polyhedral corners, also lead to large thermal
expansion and compressibility in crystals. Large volume changes of
a-quartz with temperature and pressure are almost entirely the result of
T-O-T bending (Levien, Prewitt, and Weidner, 1980), and the maxi-
mum expansion or compression direction in minerals such as alkali
feldspars (Prewitt, Lueno, and Papike, 1976) and bertrandite (Hazen
and Au, 1986) are approximately parallel to T-O-T angles that
undergo significant changes. Thus, in structures with intermolecular
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bonds or flexible interpolyhedral angles, it is possible to predict com-
pression anisotropies. However, the magnitudes of axial expansion or
compression resulting from these mechanisms have yet to be quantified
in any useful predictive scheme.

In many minerals bond expansion and compression, alone, control
the P-T-V equation of state. In most simple binary compounds, in-
cluding those with the rock salt, fluorite, cesium chloride, wurzite,
sphalerite, corundum, §-quartz, a-rhenium oxide, 8-cristobalite, high-
tridymite, and rutile structures, the polyhedral equations of state are
identical to those of the crystal (Hazen and Finger, 1982). This corre-
spondence results from the constraints on polyhedral orientations in
these structures: macroscopic volume changes can only result from
changes in polyhedral volume. In minerals with the olivine, spinel,
scheelite, and other structures with no interpolyhedral flexibility a
similar situation obtains. Expansion and compression of these minerals
are equal or only slightly less than those of the most deformable (in these
cases usually a 24 or 3+ cation) polyhedron. Feldspars, garnets, and
noncubic perovskites, similarly, display thermal expansion and compres-
sion close to those of the large alkali or divalent cation polyhedra; in
these minerals the corner-linked frameworks of octahedra and/or
tetrahedra deform to the size of the large polyhedra. A similar behavior
is expected for most feldspathoids and zeolites. It appears possible,
therefore, to predict the magnitudes of thermal expansion and compres-
sion for many minerals on the basis of the known equations of state for
constituent polyhedra.

Fictive Thermochemical Properties of Polyhedra

The Robinson and Haas procedure.—Mineralogists have long recog-
nized that heat capacities and calorimetric entropies can be estimated by
summation of the heat capacities of constituent oxides or elements
(Kopp, 1864). Robinson and Haas (1983) elaborated on this method by
considering fictive heat capacities of polyhedral components rather than
oxides. Experimental heat capacity data between 0° and 1200°C for 61
minerals were analyzed by weighted, simultaneous, multiple least-
squares techniques. For each of 17 types of cation polyhedra as well as
fluorine, hydroxyl, and H,O, Robinson and Haas derived a fictive
polyhedral heat capacity of the form:

Cp=a+2bT + ¢/T* + f T? + g/T"?, (6)

where Cj, is the fictive heat capacity, T is the absolute temperature, and a
through g are coefficients derived from the least-squares analysis. For
most polyhedra a, b, and g are the only nonzero coefficients. Thus, for
example, fictive heat capacity of a SiO, tetrahedron is:

Cp = 109.38 — 0.005552T — 1083.5/T'2 (7)

Robinson and Haas also presented values for fictive polyhedral
calorimetric entropy, which is closely related in form to the heat
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capacity expression:
S =alnT + 2bT — ¢/T? + e + f T?/2 — 2g/T"? ®)

Mineral heat capacities and calorimetric entropies are calculated from
fictive polyhedral values by a simple linear summation over all polyhedra
in one formula unit. The Robinson and Haas calculated heat capacities
generally agree with experimental values to better than +2 percent over
the temperature range 0° and 1200°C. This accuracy is a significant
improvement over the +5 percent errors typical of the oxide summation
procedure. It is evident, therefore, that the heat capacity of minerals is
sensitive to the coordination environment of cations as well as the type
of cation. A similar conclusion was demonstrated by Jeanloz (1982) in his
examination of the variation of thermodynamic properties across phase
transitions involving changes in cation coordination.

It is instructive to examine the 61 minerals cited by Robinson and
Haas (1983) in more detail to identify phases that deviate most signifi-
cantly from the predicted heat capacities. This information is not
included in their publication, but the authors have kindly loaned their
computer output for this analysis. Predicted heat capacities for biopyri-
boles (pyroxenes, amphiboles, and micas) conform extremely well with
observed values. Average differences between observed and calculated
heat capacities for such minerals as diopside, tremolite, muscovite, and
phlogopite are smaller than +1 percent over most of the temperature
range 0° to 1200°C where experimental values are available. Similar
close agreement is found for most feldspars, feldspathoids, and many
orthosilicates.

The least satisfactory agreement is obtained for olivines (forsterite,
fayalite, and Ca-olivine), 8-quartz, and g-cristobalite. Each of these
phases has a calculated heat capacity that is too large—by as much as 2 to
5 percent. These olivines and high-symmetry silica polymorphs share
one significant structural feature, namely that all changes in volume
with temperature must result from changes in cation-anion bond
lengths. No changes in interpolyhedral angles are possible because of
the inflexibility of polyhedral linkages. This behavior is distinct from
that of biopyriboles, feldspars, feldspathoids, garnets, aluminosilicates,
and many other minerals in which some interpolyhedral angle variations
accompany thermal expansion.

The calculated heat capacity of a-quartz is significantly less than
the observed values; this mineral is the worst such case. Low quartz is
unusual in that virtually all its thermal expansion results from changing
Si—O-Si angles; all interpolyhedral linkages are flexible. It seems likely,
therefore, that whole-polyhedron vibrations, which are possible adja-
cent to a flexible shared corner, may be a significant aspect of mineral
heat capacity that is not explicitly treated in the Robinson and Haas
polyhedral approach. Biopyriboles and other minerals with a few flexi-
ble corner-shared polyhedra are fit well by the fictive polyhedral
parameters. But extreme cases, such as a-quartz with all flexible linkages
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or olivine with no flexible linkages, tend to have observed heat capacities
higher or lower, respectively, than calculated.

It may at first seem paradoxical that feldspars and feldspathoids,
which like a-quartz are known to have a high percentage of flexible
interpolyhedral linkages, show close agreement between observed and
calculated heat capacities. It should be noted, however, that these are
the only minerals included in the Robinson and Haas calculations that
contain significant proportions of alkali cations in “‘6-coordination.”
(Micas, for example, were assigned alkalis in ‘‘8-coordination.”) The
fictive polyhedral parameters for *‘6-coordinated” alkali sites thus
probably have the effects of interpolyhedral vibrations imbedded in
their coefficients as a consequence of the least-squares fitting of polyhe-
dral coefficients.

This analysis suggests that an improved empirical summation
procedure might be developed by the inclusion of a simple polyhedral
linkage coefficient that represents the number or flexibility of corner-
shared structural elements.

Fictive heat capacity of the BeQ, tetrahedron.—Recently-determined
high-temperature heat capacities of minerals in the system BeO-Al,O;—
Si0y-H,0O (BASH) by Hemingway and others (1986) provide a test of
the Robinson and Haas model. New data for hydrous and anhydrous
beryl (Be;AlySigO3 + HyO), phenakite (Be,SiOy), euclase (BeAl-
SiO,(OH)), bertrandite (Be,Si;O,(OH),), and chrysoberyl (BeAl,O,)
have been incorporated into the Robinson and Haas data base. Fictive
heat capacities of tetrahedral silicon, octahedral aluminum, hydroxyl,
and H,O were constrained to be the same as those in Robinson and Haas
(1983, table 3). Only the a, b, and g coefficients of tetrahedral beryllium
were refined. The resulting fictive polyhedral heat capacity for tetrahe-
dral Be is:

C, = 98.194 — 0.009277T — 1217.1/T'2 9)

Calculated heat capacities of hydrous and anhydrous beryl, euclase,
chrysoberyl, and phenakite all agree within about 1 percent of the
observed values throughout the observed range 25° to 525°C, whereas
the calculated heat capacities of bertrandite are systematically too large
by about 2 percent (figs. 5 and 6). The agreement between observed and
calculated heat capacities is thus comparable to experimental error of
the calorimetric measurements, themselves.

In the case of mineral heat capacities, therefore, the two assump-
tions of the polyhedral approach appear to obtain to at least a first
approximation. There exist fictive polyhedral properties that are in-
variant from structure to structure, and mineral heat capacities can be
calculated by a simple linear summation of these polyhedral values. It is
important to note, however, that the fictive polyhedral heat capacities
and calorimetric entropies calculated by the Robinson and Haas proce-
dure, while closely related to the energetics of nearest-neighbor cation-
anion bonding, are not exclusively the result of these interactions. The
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Fig. 5. Calculated (circles) versus observed (dots) heat capacities of hydrous and
anhydrous beryl versus temperature (K).

least-squares procedure used to derive the polyhedral properties tends
to average out energy associated with inter-polyhedral effects amongst
the several constituent polyhedra of each mineral.

Polyhedral Elastic Constants and Mineral Elasticity

Polyhedral elastic constants.—Perhaps the most ambitious applica-
tion of the polyhedral approach has been the attempt to identify
polyhedral elastic constants and to use these constants in a rigid-ion
model for the prediction of crystal elasticity (Au, 1984; Au and Hazen,
1985; Auand Weidner, 1986). One rationale for adopting this approach
is that conventional central-force models are unable to account for
observed Cauchy violations (cubic ¢,y # ¢;5) that are observed in most
oxides and silicates. The many-body interactions inherent in polyhedral
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Fig. 6. Calculated (circles) versus observed (dots) heat capacities of bertrandite,
euclase, chrysoberyl, and phenakite.

modeling incorporate noncentral forces and thus may provide a simple
scheme for predicting real crystal moduli.

Polyhedral elastic moduli (¢;, ¢4, and ¢,5) for magnesium, cobalt,
nickel, manganese, and aluminum octahedra were derived from the
single-crystal moduli of MgO, CoO, NiO, MnO, and Al,Os;, respectively.
Au then used these polyhedral parameters to model minerals with the
olivine structure: forsterite, CoySiOy, NiySiOy4, Mn,ySiO,, and chrysobe-
ryl. In addition to three constrained octahedral cation elastic constants,
the model includes three variable tetrahedral cation elastic moduli, four
variable anharmonic interatomic spring coefficients, and a variable
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ionicity factor. Elastic constants of forsterite were reproduced to within
an average of 3 percent (Au and Weidner, 1986) and those of chrysobe-
ryl to within 1 percent (Au and Hazen, 1985). In spite of this apparent
success, however, there remain significant difficulties with the proce-
dure. In the case of forsterite, 8 variables (the 3 tetrahedral moduli, 4
spring coefficients, and ionicity) were optimized in an effort to match
the 11 observed forsterite elastic constants. The eight coefficients were
varied to match the known forsterite elastic moduli, rather than to
predict elasticity from first principles. No obvious physical significance
can be ascribed to the eight variables, and, what is particularly disturb-
ing, the interatomic spring constants and fictive silicon tetrahedral
elastic moduli are not transferable to the other silicate olivines.

The case of chrysoberyl is also unconvincing: The three aluminum
octahedral elastic moduli were treated as variables, so 11 variables were
used to model the 11 crystal elastic constants. The parameterization led
to excellent agreement between observed and fitted elastic moduli, as
expected in a case where the number of variables equals the number of
fitted parameters. Unfortunately, the aluminum octahedral elastic con-
stants calculated for chrysoberyl do not agree with those derived from
the oxide, corundum. In addition, the anharmonic spring coefficients
for O-O, Al-Al, and Al-0 in corundum versus chrysoberyl are calculated
to have very different values—different signs in the cases of O-O and
Al-O. It is not clear, therefore, whether this polyhedral approach can
provide significant insight or predictive capability.

Polyhedral linkages and mineral elasticity.—In spite of the question-
able success of quantitative polyhedral modeling of elastic constants, it is
certain that a knowledge of polyhedral compressibilities and linkage
rigidity is central to a qualitative understanding of mineral elasticity.
Elastic properties of numerous minerals, including beryl (Yoon and
Newnham, 1973), pyroxenes (Weidner, Wang, and Ito, 1978; Levien,
Prewitt, and Weidner, 1980; Bass and Weidner, 1984), garnets (Leitner,
Weidner, and Liebermann, 1980), aluminosilicates (Vaughan and
Weidner, 1978), and micas (Vaughan and Guggenheim, 1986), have
been rationalized on the basis of the types and linkages of polyhedra. In
muscovite mica (Vaughan and Guggenheim, 1986), for example, com-
pression within the atomic layers is equal to that of the aluminum
octahedra, which comprise the least compressible polyhedral layers.
Compression perpendicular to the layers is much greater, because the
relatively soft potassium polyhedra are free to compress in that direc-
tion. Thus, ¢;; ~ ¢y3 » ¢33 in muscovite and other micas. By the same
token, shear within the plane of mica layers is constrained by the
edge-sharing octahedral array, but shear perpendicular to layers is much
easier because of the deformable alkali polyhedra; thus, ¢gs > €55 ~ €44.

Mineral elasticity is controlled by the distribution of rigid versus
weak structural elements. Rigid elements include shared polyhedral
faces and edges and inflexible cation-anion—cation angles. Weak ele-
ments include large 17 or 2% cation polyhedra, flexible interpolyhedral
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angles, and intermolecular bonds. Any crystal direction with continuous
rigid linkages, such as the chain direction in pyroxenes or any direction
within a mica layer, will have a relatively small compressibility, approxi-
mately equal to the polyhedral compressibility of the rigidly-linked units
that lie in that direction. Any crystal plane with continuous rigid
linkages will have relatively large shear modulus. Conversely, any crystal
plane with continuous array of flexible linkages or deformable polyhe-
dra will display relatively large compressibility perpendicular to that
layer and relatively small shear moduli in any plane perpendicular to the
layer.

Other Polyhedral Properties

Characteristic vibrational frequencies.— A number of physical charac-
teristics of condensed matter, in addition to equation of state, thermo-
chemical parameters, and elasticity, may be related to the constituent
polyhedra. Each type of polyhedron, for example, has characteristic
vibration frequencies (internal vibration modes) that can be used to
identify cation species in fluids and glasses (Mysen, Virgo, and Seifert,
1985) as well as to assign bands in vibrational spectra of minerals
(McMillan, 1985). Kieffer (1979) made use of the characteristic frequen-
cies of silicon tetrahedra in her formulation relating silicate mineral heat
capacities to vibrational spectra. Such polyhedra as WO, and MoO,
tetrahedra are also characterized by a remarkable constancy of internal
mode vibrational frequencies.

Melt properties.—The polyhedral approach would seem to be par-
ticularly well suited for the estimation of silicate melt properties.
Procedures to predict silicate liquid properties such as density (Bottinga
and Weill, 1970) and viscosity (Bottinga and Weill, 1972) from oxide
summations have proven useful in modeling geological systems. Such
models would be physically more plausible and probably more accurate
if recast in a polyhedra context.

Each type of polyhedron acts as a network former or network
modifier in 2 manner that, on average, affects the density and viscosity
of the liquid. If appropriate polyhedral coefficients for density and
viscosity were known, then melt properties could be predicted from a
knowledge of melt structure and composition. Furthermore, it might be
possible to constrain models of melt structure if composition and
physical properties were known.

Polyhedral stability fields.—Given the relative invariance of polyhe-
dral properties from structure to structure, it is intriguing to speculate
on the possibility of polyhedral stability limits—conditions of tempera-
ture and pressure beyond which a given cation-coordination cluster is
energetically unfavorable compared to other clusters. Hazen and Finger
(1978b), for example, noted that virtually all silicate minerals have
4-coordinated silicon at surface conditions, but all known silicates above
300 kb have 6-coordinated silicon. Furthermore, the estimated aver-
age Si-O bond distance for silicon tetrahedra in structures at their
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pressures of transformation are often approx 1.59 A. Does this value
represent an energetic limit for silicon tetrahedra? Do other polyhedra
have similar limits?

In the case of MgOs octahedra in silicates a transformation to
8-coordinated magnesium is observed in several minerals at pressures
where average Mg-O distance approaches about 2.05 A. This distance
cannot be considered a polyhedral limit, however, because MgO in the
rock salt structure persists to pressures well above 1 Mbar, at which
pressure the Mg-O distance is about 1.9 A (Mao and Bell, 1979).
Similarly, several silicates with calcium in octahedral coordination
transform when the average Ca-O distance is compressed to about 2.35
A, but CaO with octahedral calcium is stable at high pressures where the
Ca-O bond is much shorter (Sharp, Hazen, and Finger, 1987). Thus,
while polyhedral stability limits may obtain at extremely high tempera-
tures or pressures, it is evident that they will not be of much use in
constraining models of hypothetical mineral structures at extreme
conditions.

V.SUMMARY

The polyhedral approach may be summarized by considering its
successes and its shortcomings. The advantages of the polyhedral
approach include the following:

1. The approach has led to the recognition of certain polyhedral
properties, notably thermal expansion and compression, that are
remarkably constant from structure to structure for many types of
polyhedra.

2. The method has a proven potential for predicting mineral heat
capacities and holds promise for predicting thermal expansion and
compression of minerals. The polyhedral approach also provides a
sound qualitative framework for understanding mineral elasticity.

3. The polyhedral approach reveals interesting anomalies (the
compressibility of CsCl, for example) that shed light on relationships
among structure, bonding, and properties.

4. Empirical relations developed by polyhedral modeling provide
constraints on theoretical models of mineral behavior. The relation
between polyhedral compressibility and d*/z (eq 5), for example, may
provide a key to realistic pair potentials in oxides and silicates.

Polyhedral modeling of minerals is limited because of the following
factors:

1. The assumption of invariant polyhedral properties is, at best,
only a first approximation. In several notable cases—the compression of
silicon tetrahedra, for example—significant variations occur from struc-
ture to structure.

2. The assumption that summation procedures can be found to
relate polyhedral properties to bulk crystal properties is questionable,
unless polyhedral linkages can be included in the formalism. The
important, and sometimes dominant, effects of polyhedral linkage
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(particularly linkage rigidity) are not yet sufficiently well quantified to
calculate most mineral properties from polyhedral properties.

3. No allowance is made for significant differences in polyhedral
distortions from structure to structure. The energies associated with
crystal field effects, Jahn-Teller distortions, or lone pairs are not
considered.

4. Any disordering of polyhedra is treated as ideal; excess proper-
ties of mixing are not predicted.

5. The method works only for polyhedral compounds; several
classes of materials, including metals and alloys, organic and organome-
tallic crystals, and many ‘“‘covalent” sulfides and sulfosalts, are not
composed of obvious polyhedral units.

One of the legacies that Dave Wones left his students was the
importance of viewing rocks in a variety of ways. Rocks may be treated as
assemblages of minerals, each with its characteristic structure and
properties. They may be quantified as weight percentages of oxide
components or as ratios of normative minerals. They may be considered
graphically in terms of fictive chemical components in multi-dimen-
sional space, or they may be described mechanically as three-dimen-
sional networks of crystalline interfaces, with little regard for chemical
or mineralogical details. Geophysical models of rocks may emphasize the
elastic, electrical, or magnetic behavior of the bulk material, whereas
geochemical models often detail isotopic and trace element distributions
among adjacent mineral grains. Each of these different descriptive
approaches provides insight on a rock’s present state and geological
history; a comprehensive rock description might include aspects of all
these approaches.

The polyhedral approach provides yet another, complementary
way to describe a rock. Each cation in a rock system is likely to reside in a
tavored polyhedral environment. Those polyhedra, and the linkage
patterns that they adopt, form the condensed phases of virtually all
common crustal materials. A recognition of polyhedral properties, and
an understanding of how those properties are reflected in mineral
behavior, can provide insight into the physics and chemistry of earth
materials,
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